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Abstract. A series of experiments in stationary and moving passenger rail cars were con-

ducted to measure removal rates of particles in the size ranges of SARS-CoV-2 viral aerosols,

and the air changes per hour provided by existing and modified air handling systems. Such

methods for exposure assessments are customarily based on mechanistic models derived

from physical laws of particle movement that are deterministic and do not account for mea-

surement errors inherent in data collection. The resulting analysis compromises on reliably

learning about mechanistic factors such as ventilation rates, aerosol generation rates and

filtration efficiencies from field measurements. This manuscript develops a Bayesian state

space modeling framework that synthesizes information from the mechanistic system as well

as the field data. We derive a stochastic model from finite difference approximations of dif-

ferential equations explaining particle concentrations. Our inferential framework trains the

mechanistic system using the field measurements from the chamber experiments and deliv-

ers reliable estimates of the underlying physical process with fully model-based uncertainty

quantification. Our application falls within the realm of Bayesian “melding” of mechanis-

tic and statistical models and is of significant relevance to industrial hygienists and public

health researchers working on assessment of exposure to viral aerosols in rail car fleets.

Keywords. Bayesian inference; dynamical systems; industrial hygiene; mechanistic sys-

tems; melding; differential equations; state-space models.

1. Introduction

With the outbreak of the Covid-19 pandemic, public transit demand in the United States

took a hit (NYC MTA, 2020) as initial reports suggested it to be among the major vectors

for transmission of the SARS-Cov-2 virus (Harris, 2020). As it became clearer that the virus

causing Covid-19 was transmitted via respiratory secretions which are aerosolized into tiny

droplets (Chia et al., 2020), transit agencies took measures to minimize the exposure to the

virus for passengers and employees. Following studies revealing inadequate social distancing
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rules in such settings (Bazant and Bush, 2021), transit agencies have considered engineering

interventions with the aim of reducing the risk of infection. While ventilation and filtration

have always been integral to the air handling systems of train fleets, the Covid-19 public

health crisis has brought increased attention on the effectiveness of engineering interventions.

In partnership with a large-scale, interstate, mass-transit rail company in the United

States, researchers have carried out a series of experiments inside a fleet of passenger rail

cars sampled with a design accounting for various controls involving ventilation and filtration

systems. The experiments focus on measuring concentration of aerosols at different locations

inside the rail car compartment with an aerosol generator in the center. The aim is to

ascertain important quantities related to ventilation and filtration system. As we do not

observe the actual aerosol concentrations directly, but record partial noisy measurements, it

is crucial from the industrial hygienist’s perspective to understand the underlying physical

process described by a system of deterministic differential equations.

Consolidating scientific inference by borrowing information from deterministic mecha-

nistic systems and from field measurements designed to emulate the system continues to

attract significant attention in diverse health science applications. Statistical approaches

include Bayesian melding (e.g., Raftery et al., 1995; Poole and Raftery, 2000; Fuentes and

Raftery, 2005; Raftery and Bao, 2010a), which synthesizes such information through a generic

Bayesian hierarchical framework,

[data | process, parameters]× [process | parameters]× [parameters] (1)

by modeling the field measurements (data), the mechanistic system (process) and all model

parameters (mechanistic and statistical) jointly using probability distributions. Bayesian

inference typically computes, or draws samples from, the posterior distribution of the process

and parameters and carries out subsequent predictive inference by extending such inference

to hitherto unmeasured observations. In its simplest form, Bayesian melding proceeds by

regressing the data on the physical model. See, for example, Zhang et al. (2009) and Raftery

and Bao (2010b) for two different applications. Monteiro et al. (2014) demonstrate, however,

that straightforward Bayesian nonlinear regression can be highly ineffective in predicting

exposure concentrations in designed chamber experiments such as those encountered here.

Using stochastic process emulators to model the output of the mechanistic system is widely

used in calibrating computer models and similar approaches have been used in Bayesian

melding (see, e.g., Monteiro et al., 2014; Fuentes and Raftery, 2005). In fact, such methods

are often the only option when the mechanistic system is highly complex (e.g., climate

models) and requires specialized computing environments for data analysis. In industrial

hygiene, on the other hand, relatively simple differential equations comprise the mechanistic

system which suggests building Bayesian dynamical systems for their analysis (Abdalla et al.,

2020; Wikle and Hooten, 2010; Wikle et al., 2019). This enables mechanistic parameters to
2



directly learn from the data obviating the need to carefully design runs, often multiple times,

of the mechanistic system over a range of inputs. We work within such a paradigm here.

The novelty of our application lies in the manner in which we address several data an-

alytic challenges. First, the mechanistic models we consider incorporate multiple rise and

decay of concentrations that are governed by the mechanistic parameters and experimental

conditions. Assimilating this information requires a careful balance of statistical learning

from the data as well as from the underlying deterministic mechanism. Second, we need

to construct our inferential framework to handle streaming in as different cycles within the

experiment. Industrial hygiene experiments typically involve a substantial amount of unre-

liable “background data” between cycles. We address this issue by allowing our framework

to learn about the process in these background zones by assimilating mechanistic considera-

tions with data driven inference. A specific contribution of this framework is aimed at public

health researchers as we show the inferential benefits of performing an analysis by delving

into the mechanistic equations over a black-box emulator-based inference based on multiple

runs of the system.

The remainder of this manuscript evolves as follows. Section 2 offers an account of dif-

ferent mechanistic models in industrial hygiene and provides scientific justification for our

framework. Section 3 describes the design and conduct of the field experiment. Section 4

develops the Bayesian hierarchical modeling framework while Sections 5 and 6 present anal-

ysis of simulated data and that of the field experiment, respectively. Section 7 concludes the

article with a discussion.

2. Mechanistic Models

The “one box model” (Reinke and Keil, 2009) is widely used in environmental engineering

to assess occupational exposure when subject exposure occurs far from the source. The

working assumptions of the model includes the “well-mixed room” assumption indicating a

spatial uniformity of particle concentration inside the chamber at an instant. The assumption

of the room being well mixed is due to either natural or induced air currents, which results

in nearly equal concentration levels throughout the room.

The standard model assumes that a source is generating a pollutant at a constant rate

G in a room of volume V and ventilation volumetric flow rate Q. The following differential

equation describes the dynamics of particle concentration C(.) inside the room, which is a

function of time t. We will refer to this system as “Model 101” (Hewett and Ganser, 2017)

Model 101: V
dC

dt
= G− CQ . (2)

In practice, usually the generation is stopped after some time and the concentration eventu-

ally decays resulting in an experiment cycle. If the total time taken by an experiment cycle

to end is T with the generation stopped at time T0, then the time dependent concentration
3



Variable Definition Unit

G Generation rate mg/min

V Volume m3

Q Ventilation rate m3/min

QL local exhaust ventilation rate m3/min

QR room recirculation system ventilation

rate

m3/min

ϵL fraction of the source emissions imme-

diately captured by the local exhaust

unitless (0,1)

ϵLF local exhaust return filtration efficiency unitless (0,1)

ϵRF general ventilation recirculation filtra-

tion efficiency

unitless (0,1)

Table 1. Hewett Model 111 parameters

during the exposure rise and decay of a cyclic process is given by the functions

Rise: Cr(t;C0, ϕ) = C0 exp

(
−Q
V
t

)
+
G

Q

[
1− exp

(
−Q
V
t

)]
, t ≤ T0

Decay: Cd(t;C0, ϕ) = Cr(T0;C0, ϕ) exp

(
−Q
V
(t− T0)

)
, t > T0

, (3)

where ϕ = (G,Q) denotes the unknown parameters of interest. Due to the inadequacy of

Model 101 for exposure assessment in the presence of local engineering controls, Hewett and

Ganser (2017) propose enriching the model with suitable parameters for local controls and

develop a nested sequence of mechanistic models. The last, hence the richest, model in the

sequence is described as “one box, constant emissions, Local Exhaust Ventilation (LEV)

with return, general ventilation with re-circulation” (acronym 1Box.CE.LevR.GvR). This

model is applicable to a local exhaust setting in which the filtered air is returned to the

workplace, but with an increase in the effective ventilation by the amount of recirculated air,

accompanied by the efficiencies for contaminant collection, filtration etc. We refer to this

model as “Model 111”, which is described by the mass balance equation,

Model 111: V
dC

dt
= (1− ϵLϵLF )G− C(Q+ ϵLFQL + ϵRFQR) . (4)

The closed form solution of (4) is a reparametrized version of the functions in (3), Cr(t;ϕ
′)

and Cd(t;ϕ
′) with ϕ′ = (G′, Q′) where, G′ = (1−ϵLϵLF )G andQ′ = Q+ϵLFQL+ϵRFQR. Here,

the parameters of interest are ϕ1 = {G,Q,QR, QL, ϵL, ϵLF , ϵRF}. Table 1 briefly explains the

parameters involved in this mechanistic system.
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Figure 1. A schematic diagram of the experimental setup in a typical pas-

senger car, drawn to scale with lengths in metres.

3. Experiment

Experimental investigations were carried out to measure the removal rates of particles in

the size ranges of SARS-CoV-2 viral aerosols in three rail cars of the same fleet, representative

of the rail company’s most regularly used commuter passenger cars. Each rail car was 150.5

m3 (5,314 ft3) with a designed outdoor air intake flow rate of 34 m3/min and a designed

total supply air flow rate of 102 m3/min. The air in the car is designed to be filtered 40.7

times per hour and replaced or changed with outdoor air 13.6 times per hour by the HVAC

system. Outdoor air is brought into the rail cars’ return air duct (return plenum) through

dampers that regulate the airflow. Here, the outdoor air mixes with the recirculated air,

passes through a MERV-8/13 filter,then moves through the heating and cooling elements

before entering the supply air duct (supply plenum) to be distributed back into the car

volume. An exhaust blower removes a portion of the cabin air to the outside depending on

the position of a ventilation damper.

The rail cars can operate at speeds up to 201 km/h (125 mph). Each cabin had 36 seats

on each side of a central aisle, spread over 18 rows, overhead compartments above each row,

and two bathrooms on one end as shown in Figure 1. Aerosols in the 0.3–5.0 mm size range

were generated using a Collision nebulizer (MRE 3-jet with attached pressure gauge) with

a 70:30 mixture of propylene glycol and vegetable glycerin. The nebulizer was placed in the

center of the rail car between rows 10 and 11 (Figure 1), on a stand 1.0 m above the floor

with the outlet 0.2 m above that. This height is equivalent to the distance from the floor to

the middle part of the seat’s headrest, making it a good approximation for the height of a

person’s breathing zone and the origin of particle dispersion.

Real-time aerosol concentrations were measured at four locations in the passenger cars

using photo detector particle counters (AeroTrak Handheld Particle Counter- Model 9306;

TSI; Shoreview, MN). The AeroTrak counts particles using a laser beam and a photodetector
5



to detect light scattering and provides particle counts in six size ranges: 0.3–0.5 mm, 0.5–1.0

mm, 1.0–3.0 mm, 3.0–5.0 mm, 5.0–10.0 mm, and > 10.0 mm. Each AeroTrak was calibrated

daily, before beginning the experiments. Aerosol concentration measurements were logged

at 1-min intervals for each experiment and downloaded to a computer as .csv files. Each

experimental run consisted of 3 experiment cycles with each cycle carried out over a period

of approximately 30 min with some background at the end, with the Collison nebulizer

generating the aerosol for the first 15 min (aerosol concentration increase) and no aerosol

generation for the second 15 min (aerosol concentration decrease). The intent was not to

mimic human breathing or speaking but rather to observe the fate of aerosol particles of

relevant sizes over time in the cabin. Complete details of the sampling instrumentation and

experimental design are given in Das et al. (2023).

4. Bayesian modeling

The statistical model must account for the considerable amount of measurement errors

and suitably quantify uncertainties in the field experiment. Wikle and Hooten (2010) offer

a broad framework for statistical modeling exploiting knowledge of the underlying physical

system available in the form of a dynamical system. We assume that a first-order Markov

assumption is appropriate in this context and, hence, we introduce a process evolution model

describing the latent true particle concentrations inside the chamber.

The basic framework follows the model as given in (5). Due to a high degree of skew-

ness in particle concentrations, it is reasonable to model the logarithmic concentration with

Gaussian noise. Let Yt denote the measured concentration at time t and let Ct be the latent

process representing the true concentration at time t. The observation equation allows the

latent concentration to drive the inference while accommodating measurement errors. The

transition equation models concentrations over time. These are formulated as

Observation Equation: log Yt = logCt + υt, υt ∼ Pυ

Transition Equation: Ct = f(Ct−1) + ωt, ωt ∼ Pω ,
(5)

where υt and ωt are random processes modeling measurement errors and uncertainty in the

concentration process through probability distributions Pυ and Pω, respectively, and f(·) is
a specified function to introduce non-linearity in the transitions if needed.

Replacing the instantaneous rate of change of concentration in (2) by the average change

in concentration in a time interval (t, t + ∆t], yields an approximate relation between the

concentration at the end and at the beginning of the interval. If C(t+∆t) is the underlying

particle concentration at the next time point of measurements, with ∆t being specified

according to the time gap between successive measurements during the experiment and

units of relevant parameters, we model the rise and decay as Ct+1 ≈
(
1− ∆t

V
Q
)
Ct +

∆t

V
G

6
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Figure 2. Plot of concentration curve C(t) versus t for a cyclic experiment

with 3 cycles. The actual total length of the experiment is 120 minutes, with

emission occurring during the first 15 minutes of each cycle and measurements

are recorded only during the first 30 minutes of a cycle, marked with the shaded

(in Grey) time intervals. The remaining data is treated as “background”. The

plot uses the following test values of the model parameters: G = 1000 mg/min,

V = 100 m3, Q = 20 m3/min, QL = 5 m3/min, QR = 5 m3/min, ϵL = 0.6,

ϵLF = 0.3, ϵRF = 0.9, C0 = 10 mg.

and Ct+1 ≈
(
1− ∆t

V
Q
)
Ct, respectively. Therefore,

Observation: log Yt = logCt +X⊤
t β + υt, υt ∼ Pυ (6)

Transition: Ct =

(
1− ∆t

V
Q

)
Ct−1 +

∆t

V
Gt + ωt, ωt ∼ Pω (7)

where, Xt is a vector of explanatory variables at time t, Gt = G1G(t), 1G(t) is the indicator

function for t ∈ G and G is the collection of time points when the generation of particles

was in place. The random process υt accounts for observation error and ωt accounts for

errors originating from the finite difference approximation of the differential equation and

for possible biases in the deterministic model.

4.1. Hierarchical Bayesian State-Space Model. We present a Bayesian state space

model derived from (6) and (7) that address two challenges. First, the nature of the ex-

periment generates consecutive cycles of data as described in Figure 2. Second, each cycle

is composed of both a rise and decay in concentrations as described in (3), where the initial

concentration of a cycle is derived from the estimated concentration in the second cycle. If

Zt is the (possibly transformed) observed data and g(·) is a suitable transformation for the
7



latent particle concentration at time t, Ct, then we construct the Bayesian dynamic model

Zt = g(Ct) +X⊤
t β + υt, υt

iid∼ Pτ1 ,

Ct = At(ϕ,∆t)Ct−1 +Bt(ϕ,∆t) + ωt, ωt
iid∼ Pτ2 ,

{ϕ, β, τ} | ψ ∼ p(ϕ) p(β, τ | ψ),

{ψ} ∼ π(ψ)

(8)

where, τ = {τ1, τ2} are the parameters associated with the error distributions. The coef-

ficients At and Bt in the process evolution are functions of ϕ, the unknown parameters of

the mechanistic model and the finite difference increments ∆t, which are known. In Model

101, ϕ = {G,Q} whereas, in Model 111, ϕ = {G,Q,QR, QL, ϵL, ϵL.F , ϵR.F}. Usually prior

information on the such parameters is scarce and, hence, uniform priors are considered. As

we are modeling particle concentrations, it is reasonable to consider g(·) as the logarithm

function and Pτ1 as the Gaussian distribution.

Since the process evolution models particle concentration, we restrict Pτ2 to a distribution

with non-negative support. A log-normal distribution for Pτ2 possibly dependent on time t

is a viable choice. Abdalla et al. (2020) have used the Gamma distribution in mechanistic

settings. Letting Zt = log Yt, where Yt are the observed concentrations, we consider the

following model incorporating mechanistic Model 111 in (4),

Zt | Ct, β, σ
2
υ ∼ N (logCt +X⊤

t β, σ
2
υ)

Ct | ϕ,mω, σ
2
ω ∼ ShiftedLN(At(ϕ,∆t)Ct−1 +Bt(ϕ,∆t);mω, σ

2
ω)

{ϕ, β, σ2
υ,mω, σ

2
ω} ∼ p(ϕ) p(β |σ2

υ) p(σ
2
υ) p(mω) p(σ

2
ω) ,

(9)

where At(ϕ,∆t) = 1 − (Q + ϵL.FQL + ϵR.FQR)∆t/V and Bt(ϕ) = Gt∆t/V with Gt = (1 −
ϵLϵL.F )G1G(t) as described in (7). The random variable X + θ is said to be distributed

as shifted log-normal ShiftedLN(θ;µ, σ2) if logX is distributed normally with mean µ and

variance σ2 for some θ ∈ R. Setting QL = QR = ϵL = 0 in (9) obtains a hierarchical model

for Model 101 (2).

4.2. Model for observed and latent states. A salient feature of our analysis concerns

the experiment being composed of K cyclic experiments over the time period T = [0, T ] with

measurements taken over an ordered set of time points 0 < t1 < t2 < · · · < tN , where N is

the total total number of observed time points. Recognizing that the background data (see

Section 2 and, more specifically, Figure 2) collected between two cyclic experiments are often

deemed unreliable, we estimate, with uncertainty quantification, the concentration state at

the end of a cycle and use it as the assumed value at the start of of next cycle. We use the

Bayesian hierarchical model in (8) to jointly model the observations and latent states over

all the cycles.
8



Let K = {t1, t2, . . . , tN} be the set of time points at which the concentrations are measured

over the duration of the experiment. We partition K = ⊔K
i=1Ki into K distinct cycles, where

Ki denotes all the time points generating measurements in cycle i ∈ {1, 2, . . . , K} of the

experiment and ⊔ denotes disjoint unions. Let ti = maxKi be the last time point measuring

concentrations for cycle i. Let YK = {Ytj : tj ∈ K} and CK = {Ctj : tj ∈ K} denote the

sets of measurements and latent states of concentrations, respectively. The parameter space

is given by Θ = Θ1 ⊔ Θ2, where Θ1 and Θ2 are parameters present in the observation and

latent equations, respectively.

Building a hierarchical stochastic model for the observations and latent states conforming

to (9) will need to account for the latent state at the end of a cycle as the value of the

concentration state at the start of the next cycle is learned from the former. Let S =

{s1, s2, . . . , sK}, where si denotes the starting time point of cycle i. We note that si signifies

the start of cycle i and, therefore, is possibly distinct from the first time point in Ki, which

is the time point for the first measurement in cycle i. Therefore, si ≤ minKi. Assuming

that the cycles are conditionally independent, given Θ, the joint distribution of YK and CK

is

p(YK, CK∪S | Θ) =
K∏
i=1

p(Csi | Cui−1
,Θ2)

∏
tj∈Ki

p(Ytj | Ctj ,Θ1)p(Ctj | Ctj−1
,Θ2) , (10)

where ui = maxKi denotes the end point of cycle i and p(Cs1 | Cu0 ,Θ2) = p(Cs1), which

quantifies belief about the concentration state at the beginning of the first cycle, hence the

starting condition of the experiment itself.

The distributions p(Ctj |Ctj−1
,Θ2) and p(Ytj |Ctj ,Θ1) are specified as shifted log-normal

and log-normal, respectively, as in (9). The parameters in (3) appear in (10) as Θ1 = {β, σ2
v}

and Θ2 = {G,Q,QR, QL, ϵL, ϵL.F , ϵR.F ,mω, σ
2
ω}. We assign a log-normal distribution for

p(Csi |Cui−1
,Θ2) such that logCsi ∼ N (log µsi , σ

2
ω), where log(µsi) = logCui−1

− (Q/V )(si −
ui−1) is derived from the mechanistic considerations embodied in (3). Therefore, the latent

concentration state at the beginning of a cycle learns from mechanistic considerations while

also accounting for dispersion using the log-normal distribution. These specifications ensure

a dynamic framework even as we marginalize over CS leaving the distribution of the observed

data dependent only on Θ. Hence, for a fixed initial concentration Cs1 = C0, (10) yields the

joint distribution

p(YK, CK | Θ) =

∫ K∏
i=1

p(Csi | Cui−1
,Θ2)

∏
tj∈Ki

p(Ytj | Ctj ,Θ1)p(Ctj | Ctj−1
,Θ2)dCS

=
∏
tj∈K

p(Ytj | Ctj ,Θ1)p(Ctj | Ctj−1
,Θ2) . (11)

9



This reveals that the Markovian dependence within a cycle Ki in (10) is retained for any

time point in K.

4.3. Prior and Posterior. We extend (10) to a joint distribution for {Θ, CK∪S , YK} by

specifying a prior distribution p(Θ). The posterior distribution is proportional to the joint

distribution

p(Θ, CK∪S |YK) ∝ p(Θ)
K∏
i=1

p(Csi | Csi−1
,Θ2)

∏
t∈Ki

p(Yt | Ct,Θ1)p(Ct | Ct−1,Θ2) , (12)

where the prior distribution corresponding to (9) is given by

p(Θ) = N
(
β |µβ, ασ

2
υ

)
× IG

(
σ2
υ | aυ, bυ

)
× IG

(
σ2
ω | aω, bω

)
×N (mω |µm, κm)

× U (G | aG, bG)× U (Q | aQ, bQ)× U (QL | aQL
, bQL

)× U (QR | aQR
, bQR

)

× U (ϵL | aϵL , bϵL)× U (ϵL.F | aϵL.F
, bϵL.F

)× U (ϵR.F | aϵR.F
, bϵR.F

) ,

(13)

where we denote N (X | a, b), IG(X | a, b) and U(X | a, b) as Normal, inverse-Gamma and

Uniform densities in X with parameters a and b, respectively (Gelman et al., 2013).

4.4. Smoothing. A key inferential objective in dynamical systems is the smoothing of the

latent process generating the data. In our current context, this amounts to model-based

inference for the values of the latent concentrations at unobserved time points. Let Z be

a finite collection of arbitrary time points where concentrations have not been measured.

These points can be situated within the time duration of a cycle, a background time point

for a cycle, or as a future time point of a cycle.

We use the posterior distribution p(Θ, CK |YK) to evaluate the predictive distribution

p(CZ | YK) =
∫
p(CZ | YK, CK,Θ) p(Θ, CK | YK) dΘ dCK . (14)

Sampling from (14) is achieved as follows. For each value of {Θ, CK} sampled from p(Θ, CK |
YK), we draw one sample of CZ from the conditional predictive distribution p(CZ | YK, CK,Θ).

Furthermore, we sample from the posterior predictive distribution of the measurements

p(YZ | YK) =
∫
p(YZ | YK, CK,Θ) p(CK,Θ | YK) dΘ dCK

=

∫
p(YZ | CZ ,Θ) p(CZ | YK, CK,Θ) p(CK,Θ | YK) dCZ dΘ dCK (15)

by drawing a YZ from p(YZ |CZ ,Θ) for each sampled value of CZ drawn from (14). These

samples provide full Bayesian inference for all points in Z. If the points in Z lie within

the domain of a cycle, the we obtain the smoothed values of the concentration state and

measurements, while if the time points lie outside of the domain (in the future), we obtain

forecasting estimates for the concentration state and predictions of measurements based upon

values of the explanatory variables in Xt at such points.
10



5. Simulation

We simulate three experiments. The first generates data from the mechanistic system

described in (2) using the parameter values V = 100 m3, G = 1000 particles per minute and

an average ventilation rate of Q = 20 m3/min. We generated the data from the distribution

of Zt in (9) setting Ct to be the exact solution in (3) with C0 = 10, β = 0, σ2
υ = 0.01 and

∆t = 1. We generate only one 20 minute cycle assuming that the particle generator is kept

on for the first 15 minutes, which implies T0 = 15 in (3). The second experiment follows the

same experimental specifications as the first but simulates 3 cycles three cycles. We assume

that the particle generators are kept on for the first 15 minutes within each of the cycles,

which implies that T0 = 15 in the mechanistic system (3) for each of the three cycles. We

generate the data over 90 observed time points split into K1 = {1, . . . , 30}, K2 = {41, . . . , 70}
and K3 = {81, . . . , 110}.

The third experiment changes the mechanistic alters the mechanistic system from the

previous two. Here, we generate data for three cycles from the distribution of Zt in (9) using

the mechanistic system in (4) using QL = QR = 5 m3/min, ϵL = ϵL.F = 0.5 and ϵR.F = 0.9,

while retaining the same parameter values for V , G, Q, C0, β and σ2
υ as in the first and

second experiments. The sets of indices at which data are observed is same as that of the

second experiment. We analyze these data using (9); see Section 5.3.

5.1. Priors for mechanistic parameters in simulation experiments. Recall that our

model parameters are classified into Θ1 = {β, σ2
υ} representing parametric linear regression

coefficients and a measurement error variance, and Θ2 = {ϕ,mω, σ
2
ω}, where ϕ denotes the

parameters in the mechanistic model under consideration. For the most general model in

(4), we have ϕ = {G,Q,QR, QL, ϵL, ϵLF , ϵRF} while (2) has ϕ = {G,Q}. We use the family

of priors specified in (13) with aG = 200, bG = 1800, aQ = 3, bQ = 50, aQL
= 2, bQL

= 10,

aQR
= 2, bQR

= 10, aϵL = aϵLF
= 0.3, bϵL = bϵLF

= 0.7, aϵRF
= 0.6, bϵRF

= 1, aυ = 10, bυ =

8.42, aω = 2, bω = 1.68, µm = 0 and κm = 100.

Priors for the set of mechanistic parameters ϕ, which are involved in the process evolution

can be defined completely by the user or can be derived from the heuristic methods often

followed by the experimenter to get rough estimates of the parameters (see, e.g., the model

calibration procedure in Hewett and Ganser, 2017). The methods can include considering

the log-transformed concentration only for the decay part of an experiment and regressing

them on time. In case of (2), the regression coefficient of time yields estimates of the

ventilation rate Q, which, in turn, will provides estimates for G when the log-transformed

concentration of the rise in (3) is regressed on time. For more complex models, such as (4),

these heuristic methods fail to estimate all the parameters involved with ventilation. Other

engineering interventions are necessary to overcome these problems, where they exploit the

nested nature of the models. Hewett and Ganser (2017) remarks that calibration procedures
11
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Figure 3. Posterior learning of mechanistic model parameters—(a) The his-

tograms represent the posterior samples of G and Q while the light blue

density denotes the prior of the respective parameters; (b) Deviation of the

posterior median estimates from its true values for the parameter ϵLF and

Q′ = Q+ ϵLFQL+ ϵRFQR for different choices of priors. The priors p1 through

p5 denotes different uniform priors on the mechanistic parameters, ordered

according to increasing information in the prior. While more precise priors

effectuate a decrease in the deviation of the posterior median estimate from

its true values for the unidentified parameter ϵLF , we see no such pattern for

the posterior learning of Q′.

are akin to back-of-the-envelope calculations for practicing occupational hygienists. However,

these calculations can be used to build reasonable priors for parameters of ϕ.

5.2. Computation. All models discussed here are implemented in R 4.3.1 using rjags (Plum-

mer, 2022). The posterior inference for each model is based on Markov chain Monte Carlo

(MCMC) chains with 5000 iterations retained after discarding the initial 5000 samples as

burn-in. These programs were executed on a single Apple M1 chip, with 3.20 GHz base clock

speed and 8 GB of random-access memory running macOS Ventura (Version 13.4.1). We as-

sessed convergence of MCMC chains by visually monitoring autocorrelations and checking

the coverage of parameter estimates (posterior mean and 95% credible interval) with the

true values for the simulated data. Codes and data required to reproduce the results and

findings in this article are openly available at Github (active link for downloading).

5.3. Simulation results. In each of the above simulated experiments, we report data anal-

ysis using the hierarchical model (9) with mechanistic systems Model 101 and Model 111

as given in (2) and (4), respectively. For Model 101, we see reasonable posterior learning

for G and Q in Figure 3(a), whereas for Model 111 the parameters appear to be poorly
12
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Model

Number

of

cycles

Smoothing by

hierarchical

model

Smoothing by INLA

B-splines Cubic splines
Random walk

models of order 2

WAIC Knots WAIC df WAIC Type WAIC

Model

101

1 -39.1

5 -19.0 3 -16.4 RW2 -19.7

8 -17.9 10 -18.2 CRW2 -19.4

20 -12.6 20 -26.2

3 -38.8

8 -55.4 7 -12.3 RW2 -121.9

12 -81.6 15 -85.1 CRW2 -119.6

24 -10.8.5 20 -96.2

Model

111

1 -17.2

5 -18.1 3 -16.8 RW2 -19.9

8 -17.8 10 -17.3 CRW2 -19.5

20 -12.3 20 -26.8

3 12.2

8 8.5 7 52.8 RW2 -128.9

12 -65.5 15 -82.5 CRW2 -124.9

24 57.5 20 55.8

Table 2. Comparison of predictive information criteria between our physics-

informed Bayesian state-space models and various Bayesian smoothing tech-

niques using INLA on the simulated data. For B-splines, the knots denotes

number of equi-spaced knots for the spline basis. For smoothing using random

walks, RW2 model assumes independent second order increments and CRW2

denotes continuous time random walks on second order increments.

identifiable. Consequently, we see impaired posterior learning when we assign uninforma-

tive priors. Here, the mechanistic parameters ϕ = {G,Q,QR, QL, ϵL, ϵLF , ϵRF} appear as

functions (1− ϵLϵLF )G and (Q + ϵLFQL + ϵRFQR). Therefore, while we see relatively poor

learning of individual parameters, learning of the aforementioned functions is reasonable.

Hence, learning of the latent process is not compromised. We notice reasonable learning for

(Q + ϵLFQL + ϵRFQR) as opposed to weaker learning of the individual parameters Q, QR,

QL, ϵL, ϵLF and ϵRF . Figure 3(b) depicts how more informative priors for the unidentified

mechanistic parameters, constructed by considering narrower uniform distributions, posi-

tively impact their learning. Specifically, the deviation of the posterior median from their

corresponding true values tends to decrease in the presence of stronger prior information.

Hence, strongly informative priors are necessary if estimates of these individual parameters

are desired. However, deviation of the posterior median estimates of Q′ = Q+ϵLFQL+ϵRFQR

13



displays almost no change for the different priors. Investigators studying exposure assess-

ments are interested in estimating these functional forms instead of individual parameters.

For example when modeling dynamics of infectious respiratory aerosols, the quantities Q/V

in Model 101 or (Q+ ϵLFQL+ ϵRFQR)/V for Model 111 correspond to aerosol removal rates

that are important in analyzing air changes per hour (ACH), which, in turn, can inform

about probability of infection spread.

We also assess the state-space model’s effectiveness in capturing the latent process at the

observed time points using the posterior predictive distribution (14). Furthermore, for unob-

served time points we smooth the latent and observed concentrations using (14) and (15), re-

spectively. Subsequently, we compare the performance of each model with different Bayesian

semiparametric regressions that do not incorporate information from the underlying mecha-

nistic system. In particular, we considered methods such as B-splines, natural cubic splines

and random walk models of order 2 estimated using Integrated Nested Laplace Approxima-

tion (INLA: Rue et al., 2009; Lindgren et al., 2011). We specifically consider a continuous

random walk model on second order increments (denoted CRW2, as described in Section 3.5

of Rue and Held, 2005). Table 2 presents overall model comparisons using Watanabe-Akaike

Information Criterion (WAIC: Watanabe, 2010, 2013) as implemented in the LaplacesDemon

(Statisticat and LLC., 2021) package for the R statistical computing environment (R Core

Team, 2022). We report these scores for the different experimental scenarios and compare our

proposed hierarchical model with semiparametric smoothing using B-splines, cubic splines,

independent second order increments (denoted RW2, as described in Section 3.4 of Rue and

Held, 2005) and CRW2. Table 2 shows that while our porposed model significantly outper-

forms semiparametric smoothing models in out of sample forecasting, the overall model fit

as summarized by WAIC between these methods are much more competitive, and in some

cases significantly better, than our proposed model. For the single cycle data, WAIC scores

for our proposed model with Model 101 are considerably lower than all other methods, while

with Model 111, all of the models are competitive in a single cycle. On the other hand, the

two random walk models produce significantly lower WAIC scores than the others.

That RW2 and CRW2 excel in terms of WAIC is likely attributable to their interpolation

capabilities surrounding the availability of significantly more data in the 3-cycle experi-

ments. In fact, we see a roughly 21% increase in the residual sum of squares for (9) over

RW2. However, we caution against overstating the excellence of these random walk models

that have no mechanistic information. As seen in Figure 4, in the absence of mechanistic in-

formation, forecasting suffers significantly with these random walk models. Furthermore, the

aforementioned reduction in the residual sum of squares should warn investigators against

over-fitting. Finally, even if these models estimate concentration levels efficiently, they do

not inform about the mechanistic process parameters that govern the underlying physics.
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Figure 4. Prediction and forecasting performances for our hierarchical model

(9) and CRW2-based smoothing on the simulated data for the first tN time

points (marked in blue) with T0 = 15. In Figures 4(a) and 4(b) we used

tN = 20 and tN = 16 respectively.

Figure 4 shows a simple out-of-sample analysis comparing our physics-informed model with

semiparametric smoothing. The latter, besides delivering wider uncertainty bands, tends to

poorly estimate the trajectory compared to the former. The purple line and the band shows

the trajectory of the concentrations fitted using semiparametric smoothing along with the

uncertainty around it, whereas the red line and the band show the trajectory and associated

uncertainty for the out-of-sample points from our proposed physics-informed state-space

model. The yellow crosses indicate the out-of-sample data beyond tN = 20 in Figure 4(a)

and tN = 16 in Figure 4(b). In Figure 4(a), semiparametric smoothing even forecasts negative

concentrations if the data is not appropriately transformed. Figure 4(b) shows that, even

under a suitable transformation, forecasts from semiparametric smoothing are sensitive to

the time when the data becomes unavailable.

6. Analysis of rail car experiment

Das et al. (2023) have collected substantial concentration data based upon designed exper-

iments with different engineering controls, where each experiment consists of exactly three

cycles as described in Section 3. Here, we do not consider the heterogeneity in ventilation

patterns created due to the directional flow of aerosols. Instead, under the “well-mixed

room” assumption, we focus on modeling the data for one experimental run measured at

one location inside the rail car. Due to unavailability of expert prior information on the

mechanistic parameters, we only consider the calibration procedures in Hewett and Ganser

(2017) to construct priors for the relevant parameters.
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6.1. Noise calibration by mechanistic variance evolution. Experimental data from

aerosol concentrations contain considerable amounts of noise, which often exceeds the ca-

pabilities of a statistical model equipped with uniform error variance over time to quantify

uncertainty. As we expect the aerosol concentration measurements to appear in varying

scales across the duration of an experimental cycle, we consider the influence of mechanistic

factors on the evolution of the error variance over time. A simple yet effective approach

to address this is to introduce a dynamic vt = vt(ϕ) scale factor in the variance of ωt in

transition equation in (8). This scale factor depends on ϕ since the mechanistic parameters

dictate how the data are generated and, hence, how its variability evolves. Therefore, we

can modify the transition equation in (9) as

Ct =

(
1− ∆

V
Q

)
Ct−1 +

∆

V
Gt + vtωt

vt = Ht vt−1

Ht = (1 + α)1G(t) + β(1− 1G(t))

{α, β} ∼ p(α) p(β) ,

(16)

where 1G(t) = 1 when Gt = G (i.e., the particle generator is in place) and 1G(t) = 0 when

Gt = 0 (no generation). With α > 0, we model the error variances in the transition equa-

tion to change in a multiplicative fashion - increasing as long as the particle generator is

on, and decreasing with 0 < β < 1 after the generator is turned off. These modifications

are applicable to (5). Since the transition equation in (5) is derived from a finite difference

approximation of the original system, we may not be able to easily characterize the error

distribution from a transformation of {Ct}t≥1 in the transition equation while also maintain-

ing an appropriate first-order Markov dependence. The above model is implemented in the

computing environment described in Section 5.2. Posterior inference reported here is based

on 5,000 MCMC samples after discarding the first 5,000 burn-in samples.

In the current context, we find that our modified model as in (16) for the latent process

evolution adequately provides robust analysis and a similar modification in the observation

equation is unnecessary. This choice is corroborated by restrictions on the support of the

error variance imposed by {Ct}t≥1. As concentrations are positive quantities, we modeled the

transition errors using a lognormal distribution. As a result, when the noisy experimental

data is fitted with a model with time-independent transition errors, the parameter estimates

in the lognormal distribution yield inaccurate and unreasonably wide uncertainty bands for

smoothing and forecasting. Considering time-dependent errors in the transition equation

resolves this problem by suitably calibrating the errors informed by the aerosol generation

status provided by the mechanistic system. This enriches Bayesian melding of mechanistic

information and the statistical model. Figure 5 presents these comparisons.
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Figure 5. Smoothing and forecasting on noisy experimental data by models

with and without evolution of error variances over time.

6.2. Results. In addition to obtaining uncertainty quantification of the underlying process

for the particle concentration using the dynamic variance approach, as elaborated in Sec-

tion 6.1, our Bayesian model also delivers samples from the posterior distribution of the

mechanistic parameters. Table 3 presents posterior summaries of the parameters appearing

in Model 111 that includes particle generation rate, different ventilation rates and filtration

efficiencies. The posterior samples of these parameters are crucial for finding the posterior

distribution of various quantities that are relevant to a practicing industrial hygienist. For

example, we obtain the posterior distribution of the quantity (Q+ϵLFQL+ϵRFQR)/V which

corresponds to the total removal rate of the particles (in units of min−1) by evaluating the

quantity at each posterior sample of the parameters involved in the quantity. Based on

data analysis from a single experiment, we find the total removal rate of the particles to be

approximately 5.68 hr−1 with 95% credible interval (4.64 hr−1, 6.90 hr−1). Another quantity
17



Parameter Median 2.5% 97.5% Unit

G 6863.50 2854.02 9818.22 mg/min

Q 11.41 10.05 14.36 m3/min

QL 2.20 0.16 6.66 m3/min

QR 1.67 0.17 6.34 m3/min

ϵL 0.83 0.71 0.99 -

ϵLF 0.66 0.51 0.95 -

ϵRF 0.67 0.51 0.89 -

Table 3. Posterior summary of different mechanistic parameters obtained

from the analysis of data from a single railcar experiment. The filtration

efficiencies ϵL, ϵLF and ϵRF are unitless quantities and lie between 0 and 1.

of interest, the average concentration of particles (Cavg) in the rail car is estimated by

Cavg =
G′

Q′

[
1− 1

(Q′/V )T

{
1− exp

(
−Q

′

V
T

)}]
,

where G′ = (1 − ϵLϵLF )G and Q′ = Q + ϵLFQL + ϵRFQR. Here, T corresponds to the

total duration of the experiment. We find the posterior median of Cavg to be 200.53 with

95% credible interval (73.90, 286.32). The quantity Cavg is useful for modeling SARS-CoV-2

airborne quanta transmission and exposure risk that estimates probability of infection (Yan

et al., 2022; Das et al., 2023).

Assuming continuous particle generation at a constant rate G, the steady-state concen-

tration, defined as the limit of the concentration C(t) as t→ ∞, is given by C∞ = G′/Q′ for

Model 111. From our analysis, we find the steady-state concentration to be approximately

245.95 mg/m3 with a a 95% credible interval of (95.29 mg/m3, 324.71 mg/m3). Moreover, in

the absence of particle generation, we can estimate the time taken by the ventilation system

to reduce the particle concentration from C1 mg/m3 to C2 mg/m3 by (V/Q′) log(C1/C2)

minutes. Industrial hygienists may use this quantity to understand the capacity of the ven-

tilation system by studying the time required for the particle concentration to drop under a

specified threshold indicating low contamination. Figure 6 illustrates the posterior concen-

tration decay curve with C∞ as the initial particle concentration along with the estimated

time to reach a threshold indicating a low contamination level. For example, if the threshold

is specified as 10% of the estimated steady-state concentration, then the ventilation system

requires around 24 minutes to bring the concentration from its steady-state down to the

threshold with a 95% credible interval of (15 mins, 34 mins).
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Figure 6. Estimated concentration decay curve (purple) along with its 95%

uncertainty bands. The vertical dotted line denotes the posterior median of

time required for the concentration to drop below a certain threshold (hori-

zontal dashed) while and the shaded window denotes its 95% credible interval.

7. Discussion

We show that while certain mechanistic parameters may not be well identified by the field

data, the latent concentration process is effectively estimated. Assimilating mechanistic

systems in our data analysis framework yields especially pronounced benefits in forecasting

performance over flexible semiparametric smoothing techniques that do not assimilate such

systems, while all these methods may indicate adequate goodness of fit.

Practicing industrial hygienists and occupational exposure modelers are often encumbered

in their conclusions by the challenges in designing controlled experiments that can generate

data consistent with mechanistic processes posited to be generating concentrations in ideal

physical settings. When faced with the task of estimating physical parameters and concen-

trations from experimental data, exposure modeler’s generate synthetic concentrations from

the mechanistic model for different input parameters and essentially “eye-ball” which values

of the input yields concentration values closest to those from the experimental data. Even

if formal metrics based upon “distances” between mechanistically generated data and field

observations, as is done nowadays in some machine learning methods, are used to choose

“optimal” values of the mechanistic parameters, such methods preclude uncertainty quan-

tification in mechanistic inputs and noise in measurements. The tools we have described

here offers a statistically justifiable way to estimate the mechanistic parameters. We achieve
19



two practical goals of occupational exposure analysis: (i) estimating mechanistic parameters

combining information from prior mechanistic considerations and from experimental data;

and (ii) meld or assimilate mechanistic models with statistical models to provide improved

predictions for concentrations, including better forecasts into the future, while also offering

full uncertainty quantification.

Extensions of our models are possible in different directions. For example, in controlled

experiments it is typical of photo detector particle counters to offer particle counts in several

size ranges that are expected to be correlated. This stokes the possibility of jointly modeling

the particle sizes in the process. For p different size-ranges, let Yt and Ct be p-variate observed

and latent concentrations at time t. A multivariate framework for the one-box model is

g(Yt) | Ct, β, σ
2
υ ∼ Np(g(Ct) +X⊤

t β,Σ)

Ct | ϕ,mω, σ
2
ω ∼ ShiftedLMN(At(ϕ,∆t)

⊤Ct−1 +Bt(ϕ,∆t);mω, σ
2
ωIp)

{ϕ, β, σ2
υ,mω, σ

2
ω} ∼ p(ϕ) p(β |σ2

υ) p(σ
2
υ) p(mω) p(σ

2
ω) ,

(17)

where At(ϕ,∆t) = 1p− (Q+ ϵLFQL+ ϵRFQR)∆t/V and Bt(ϕ,∆t) = (1− ϵLϵLF )G1G(t)∆t/V

are calculated using element wise operations applied to the p-variate parameters in ϕ. Here,

X+θ is distributed as ShiftedLMN(θ;µ, V ) if logX is distributed as multivariate normal with

mean µ and covariance matrix V for some θ ∈ Rp. Further investigations into the dependence

structure among size-specific particle concentrations is open to future investigations as are

questions on the structure of Σ in (17) and its effects of inference.

While the current analysis advocates delving in the mechanistic equations as a part of

the model building exercise, we recognize that such luxuries may be precluded by more

complex models in other application. In this regard, stochastic emulators such as Gaussian

processes (Monteiro et al., 2014) are widely employed to conduct such inference. We have

not undertaken a comprehensive comparison with such methods in this paper and recognize

them as viable options in our current setting. Such approaches will enable broader scope of

mechanistic explorations in occupational exposure field data settings and comprise an area

of future research.

Conflict of Interest

None declared.

Funding

Banerjee, Ramachandran and Pan were supported, in part, from the National Institute of

Environmental Health Sciences (NIEHS) R01ES030210. Banerjee also acknowledges support

from NIEHS R01ES027027, the National Institute of General Medical Science (NIGMS)

R01GM148761, and the Division of Mathematical Sciences (DMS) of the National Science

Foundation 2113778.
20



References

Nada Abdalla, Sudipto Banerjee, Gurumurthy Ramachandran, and Susan Arnold. Bayesian

state space modeling of physical processes in industrial hygiene. Technometrics, 62(2):

147–160, 2020. doi: 10.1080/00401706.2019.1630009.

Martin Z. Bazant and John W. M. Bush. A guideline to limit indoor airborne transmission

of covid-19. Proceedings of the National Academy of Sciences, 118(17):e2018995118, 2021.

doi: 10.1073/pnas.2018995118. URL https://www.pnas.org/doi/abs/10.1073/pnas.

2018995118.

Po Ying Chia, Kristen Kelli Coleman, Yian Kim Tan, Sean Wei Xiang Ong, Marcus

Gum, Sok Kiang Lau, Xiao Fang Lim, Ai Sim Lim, Stephanie Sutjipto, Pei Hua Lee,

Than The Son, Barnaby Edward Young, Donald K. Milton, Gregory C. Gray, Stephan

Schuster, Timothy Barkham, Partha Pratim De, Shawn Vasoo, Monica Chan, Brenda

Sze Peng Ang, Boon Huan Tan, Yee-Sin Leo, Oon-Tek Ng, Michelle Su Yen Wong, Kalisvar

Marimuthu, David Chien Lye, Poh Lian Lim, Cheng Chuan Lee, Li Min Ling, Lawrence

Lee, Tau Hong Lee, Chen Seong Wong, Sapna Sadarangani, Ray Junhao Lin, Debo-

rah Hee Ling Ng, Mucheli Sadasiv, Tsin Wen Yeo, Chiaw Yee Choy, Glorijoy Shi En

Tan, Frederico Dimatatac, Isais Florante Santos, Chi Jong Go, Yu Kit Chan, Jun Yang

Tay, Jackie Yu-Ling Tan, Nihar Pandit, Benjamin Choon Heng Ho, Shehara Mendis,

Yuan Yi Constance Chen, Mohammad Yazid Abdad, Daniela Moses, and for the Sin-

gapore 2019 Novel Coronavirus Outbreak Research Team. Detection of air and surface

contamination by sars-cov-2 in hospital rooms of infected patients. Nature Communica-

tions, 11(1):2800, May 2020. ISSN 2041-1723. doi: 10.1038/s41467-020-16670-2. URL

https://doi.org/10.1038/s41467-020-16670-2.

Darpan Das, Kelsey R. Babik, Emma Moynihan, and Gurumurthy Ramachandran. Ex-

perimental studies of particle removal and probability of covid-19 infection in passen-

ger railcars. Journal of Occupational and Environmental Hygiene, 20(1):1–13, 2023.

doi: 10.1080/15459624.2022.2137298. URL https://doi.org/10.1080/15459624.2022.

2137298. PMID: 36256520.

Montserrat Fuentes and Adrian E. Raftery. Model evaluation and spatial interpolation by

bayesian combination of observations with outputs from numerical models. Biometrics,

61:36–45, March 2005.

Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B.

Rubin. Bayesian Data Analysis, 3rd Edition. Chapman & Hall/CRC Texts in Statistical

Science. Chapman & Hall/CRC, 2013.

Jeffrey E Harris. The subways seeded the massive coronavirus epidemic in new york city.

Working Paper 27021, National Bureau of Economic Research, April 2020. URL http:

//www.nber.org/papers/w27021.

21

https://www.pnas.org/doi/abs/10.1073/pnas.2018995118
https://www.pnas.org/doi/abs/10.1073/pnas.2018995118
https://doi.org/10.1038/s41467-020-16670-2
https://doi.org/10.1080/15459624.2022.2137298
https://doi.org/10.1080/15459624.2022.2137298
http://www.nber.org/papers/w27021
http://www.nber.org/papers/w27021


Paul Hewett and Gary H. Ganser. Models for nearly every occasion: Part i - one box

models. Journal of Occupational and Environmental Hygiene, 14(1):49–57, 2017. doi:

10.1080/15459624.2016.1213392. PMID: 27869546.

Finn Lindgren, H̊avard Rue, and Johan Lindström. An explicit link between Gaussian fields

and Gaussian Markov random fields: The stochastic partial differential equation approach

(with discussion). Journal of the Royal Statistical Society B, 73(4):423–498, 2011.

J V. D. Monteiro, Sudipto Banerjee, and Gurumurthy Ramachandran. Bayesian modeling for

physical processes in industrial hygiene using misaligned workplace data. Technometrics,

56(2):238–247, 2014.

New York City Metropolitan Transportation Authority. Subway and bus rider-

ship for 2020, 2020. [Accessed Jun 11, 2021]. https://new.mta.info/agency/

new-york-city-transit/subway-bus-ridership-2020.

Martyn Plummer. rjags: Bayesian Graphical Models using MCMC, 2022. URL https:

//CRAN.R-project.org/package=rjags. R package version 4-13.

David Poole and Adrian E. Raftery. Inference for deterministic simulation models: The

bayesian melding approach. Journal of the American Statistical Association, 95:1244–

1255, Dec 2000.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation

for Statistical Computing, Vienna, Austria, 2022. URL https://www.R-project.org/.

Adrian E. Raftery and Le Bao. Estimating and projecting trends in hiv/aids generalized

epidemics using incremental mixture importance sampling. Biometrics, 66:1162–1173, Dec

2010a.

Adrian E. Raftery and Le Bao. Estimating and projecting trends in hiv/aids generalized

epidemics using incremental mixture importance sampling. Biometrics, 66:1162–1173, Dec

2010b.

Adrian E. Raftery, Geof H. Givens, and Judith E. Zeh. Inference from a deterministic

population dynamics model for bowhead whales. Journal of the American Statistical

Association, 90:402–416, 1995.

P.H. Reinke and C.B. Keil. Mathematical Models for Estimating Occupational Exposure to

Chemicals. American Industrial Hygiene Association, 2009. ISBN 9780932627995.

Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory And Applications

(Monographs on Statistics and Applied Probability), chapter 3, pages 118–140. Chapman

& Hall/CRC, 2005. ISBN 1584884320.

H̊avard Rue, Sara Martino, and Nicholas Chopin. Approximate Bayesian inference for la-

tent Gaussian models using integrated nested Laplace approximations (with discussion).

Journal of the Royal Statistical Society B, 71:319–392, 2009.

Statisticat and LLC. LaplacesDemon: Complete Environment for Bayesian In-

ference, 2021. URL https://web.archive.org/web/20150206004624/http://www.

22

https://new.mta.info/agency/new-york-city-transit/subway-bus-ridership-2020
https://new.mta.info/agency/new-york-city-transit/subway-bus-ridership-2020
https://CRAN.R-project.org/package=rjags
https://CRAN.R-project.org/package=rjags
https://www.R-project.org/
https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software


bayesian-inference.com/software. R package version 16.1.6.

Sumio Watanabe. Asymptotic equivalence of bayes cross validation and widely applicable

information criterion in singular learning theory. J. Mach. Learn. Res., 11:3571–3594, dec

2010. ISSN 1532-4435.

Sumio Watanabe. A widely applicable bayesian information criterion. J. Mach. Learn. Res.,

14(1):867–897, mar 2013. ISSN 1532-4435.

Christopher Wikle and Mevin Hooten. A general science-based framework for dynamical

spatio-temporal models. TEST: An Official Journal of the Spanish Society of Statistics

and Operations Research, 19(3):417–451, 2010. doi: 10.1007/s11749-010-0209-z.

Christopher K. Wikle, Andrew Zammit-Mangion, and Noel Cressie. Spatio-Temporal Statis-

tics with R. Chapman & Hall/CRC, Boca Raton, FL, 2019.

Shujie Yan, Liangzhu (Leon) Wang, Michael J. Birnkrant, John Zhai, and Shelly L.

Miller. Evaluating sars-cov-2 airborne quanta transmission and exposure risk in a me-

chanically ventilated multizone office building. Building and Environment, 219:109184,

2022. ISSN 0360-1323. doi: https://doi.org/10.1016/j.buildenv.2022.109184. URL

https://www.sciencedirect.com/science/article/pii/S0360132322004206.

Yufen Zhang, Sudipto Banerjee, Rui Yang, Claudiu Lungu, and Gurumurthy Ramachan-

dran. Bayesian modeling of exposure and air flow using two-zone models. The Annals of

Occupational Hygiene, 53(4):409–424, 2009.

23

https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
https://web.archive.org/web/20150206004624/http://www.bayesian-inference.com/software
https://www.sciencedirect.com/science/article/pii/S0360132322004206

	1. Introduction
	2. Mechanistic Models
	3. Experiment
	4. Bayesian modeling
	4.1. Hierarchical Bayesian State-Space Model
	4.2. Model for observed and latent states
	4.3. Prior and Posterior
	4.4. Smoothing

	5. Simulation
	5.1. Priors for mechanistic parameters in simulation experiments
	5.2. Computation
	5.3. Simulation results

	6. Analysis of rail car experiment
	6.1. Noise calibration by mechanistic variance evolution
	6.2. Results

	7. Discussion
	Conflict of Interest
	Funding
	References

