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Abstract. Analysing non-Gaussian spatial-temporal data typically requires introducing spatial

dependence in generalised linear models through the link function of an exponential family dis-

tribution. However, unlike in Gaussian likelihoods, inference is considerably encumbered by the

inability to analytically integrate out the random effects and reduce the dimension of the param-

eter space. Iterative estimation algorithms struggle to converge due to the presence of weakly

identified parameters. We devise an approach that obviates these issues by exploiting generalised

conjugate multivariate distribution theory for exponential families, which enables exact sampling

from analytically available posterior distributions conditional upon some fixed process parameters.

More specifically, we expand upon the Diaconis-Ylvisaker family of conjugate priors to achieve

analytically tractable posterior inference for spatially-temporally varying regression models con-

ditional on some kernel parameters. Subsequently, we assimilate inference from these individual

posterior distributions over a range of values of these parameters using Bayesian predictive stack-

ing. We evaluate inferential performance on simulated data, compare with fully Bayesian inference

using Markov chain Monte Carlo and apply our proposed method to analyse spatially-temporally

referenced avian count data from the North American Breeding Bird Survey database.

Keywords. Bayesian inference; Generalised linear models; Predictive stacking; Spatial-temporal

models.

1. Introduction

Statistical modelling and analysis for spatially oriented non-Gaussian outcomes play a crucial role

in diverse scientific applications (see, for example, De Oliveira et al., 1997; Diggle et al., 1998;

Heagerty and Lele, 1998; De Oliveira, 2000; Zhang et al., 2022; Saha et al., 2022). Diverse scientific

investigations involve spatially, and possibly temporally, oriented outcomes that are not Gaussian,

or even continuous. For example, climate scientists record daily or monthly binary variables at

spatial locations indicating whether, or not, rainfall was measurable; ecologists and forest scientists

analyse temporal evolution of species counts at locations; and economists study the spatial distri-

bution of the number of insurance claims at different locations over time. While spatial-temporal
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count data are sometimes aggregated into rates or counts over larger regions, statisticians are

increasingly encountering count data referenced by space-time coordinates.

For our purposes, we consider a spatial-temporal process as an uncountable set of random vari-

ables, say {z(ℓ) : ℓ ∈ D}, over a domain of interest D, which is endowed with a probability law

specifying the joint distribution for any finite sample from that set. In spatial-temporal settings

D = S × T , where S ⊂ Rd is the spatial region, T ⊂ [0,∞) is the time domain and ℓ = (s, t) is

a space-time coordinate with spatial location s ∈ S and time point t ∈ T (see, e.g., Gneiting and

Guttorp, 2010, for a review). Following Diggle et al. (1998), we introduce spatial-temporal stochas-

tic processes for non-Gaussian data. Let y(ℓ) be the outcome at ℓ endowed with a probability law

from the natural exponential family, which we denote by

y(ℓ) ∼ EF(x(ℓ)⊤β + z(ℓ); b, ψy) (1)

for some positive parameter b > 0 and unit log partition function ψy (Section 2.1). Fixed effects

regression and spatial dependence, e.g., x(ℓ)⊤β + z(ℓ), is introduced in the natural parameter,

where x(ℓ) is a p× 1 vector of predictors referenced with respect to ℓ, β is a p× 1 vector of slopes

measuring the trend, z(ℓ) is a zero-centred spatial-temporal process on Rd specified by a scale

parameter σz and a spatial correlation function R(·, ·; θsp) with θsp consisting of spatial-temporal

decay and smoothness parameters. This structure is embodied by spatial generalised mixed-effect

models (McCulloch and Searle, 2001; Hughes and Haran, 2013). Bayesian inference for (1) is

appealing as it offers fully probabilistic inference for the latent process. However, the presence

of z(ℓ) presents challenges for non-Gaussian families as we cannot integrate out z, which begets

a high-dimensional parameter space. Iterative algorithms such as Markov Chain Monte Carlo

(MCMC) attempt to sample from the posterior distribution, but convergence is often hampered by

high auto-correlations and weakly identified parameters θsp. Section 1.3 in Haran (2011) offers a

detailed overview of MCMC algorithms for estimating such models.

Rather than devising computational algorithms to achieve improved convergence, we develop a

framework to conduct Bayesian inference for fixed effects and the latent spatial-temporal process by

entirely avoiding convergence issues for MCMC or other iterative algorithms for spatial-temporal

non-Gaussian data. Instead, we build a hierarchical model that yields analytically accessible pos-

terior distributions for β and z subject to fixing weakly identified parameters θsp and some hyper-

parameters so that we can draw exact posterior samples for any fixed values of these parameters.

This is achieved by availing of recent results developed in Bradley and Clinch (2024) on a new

class of analytically accessible conjugate multivariate (CM) and generalised conjugate multivariate

(GCM) distributions for spatial models by extending the Diaconis-Ylvisaker family of conjugate

priors for exponential families (Diaconis and Ylvisaker, 1979). Our current manuscript expands

significantly over this framework. Not only do we move from spatial to spatial-temporal processes,

we further enrich (1) by introducing spatially-temporally varying regression coefficients (Gelfand

et al., 2003). Such models are attractive in the Bayesian paradigm as they capture the impact

of explanatory variables or predictors over space and time and offer inference on processes that
2



are completely unobserved. However, these extensions are not straightforward because of the pres-

ence of explanatory variables in the fixed regression component and also in a spatially-temporally

varying component.

The literature on spatially-temporally varying coefficient models is rather sparse and has re-

mained purely notional for exponential families, perhaps because they require extensive tuning of

MCMC or other iterative algorithms that struggle with weakly identified parameters and high-

dimensional random effects. Hence, we devise Bayesian predictive stacking for estimating such

models. Stacking (Wolpert, 1992; Breiman, 1996; Clyde and Iversen, 2013) is a model averaging

procedure that is widely used in machine learning and has been shown (see, e.g., Le and Clarke,

2017; Yao et al., 2018, 2020, 2021) to be an effective alternative to traditional Bayesian model

averaging (Madigan et al., 1996; Hoeting et al., 1999). LetM = {M1, . . . ,ML} denote a collection

of L candidate models, where eachMl corresponds to a fixed set of values of certain parameters (θsp

and, for our subsequent development, a boundary adjustment parameter) that allow us to exactly

sample from the posterior distributions pl(β, z | y) for l = 1, . . . , L. Rather than pursuing full

inference using iterative sampling algorithms, we offer inference by “stacking” these L posterior

distributions by solving for the optimal set of weights needed to calculate the weighted average

of the L analytically available posterior distributions. Bayesian model averaging asymptotically

chooses a single model inM that is closest to an oracle M0 in terms of Kullback-Leibler divergence

and, hence, is appropriate ifM contains the true data generating model M0, but is flawed other-

wise. Yao et al. (2018) adapts stacking to assimilate different Bayesian predictive distributions and

appears more tenable in practical geostatistics (Zhang et al., 2023).

After briefly discussing CM and GCM distributions with multivariate extensions in Section 2,

Section 3 introduces our hierarchical spatially-temporally varying regression model and derives ac-

cessible posterior distributions. Section 4 develops predictive stacking with novel results on posterior

sampling and predictive inference. Sections 5 and 6 present simulation experiments demonstrat-

ing the effectiveness of our method and analyses a spatial-temporal dataset on avian counts. We

conclude with some discussion and directions for future work in Section 7.

2. Conjugate priors for exponential family

2.1. The Diaconis-Ylvisaker distribution. Let Y be distributed from the natural exponential

family, EF(η; b, ψ), with density

p(Y | η) = exp{ηY − bψ(η) + c(Y )}, Y ∈ Y , η ∈H , (2)

where Y denotes the support of Y and H = {η : ψ(η) <∞} denotes the natural parameter space

and, therefore, the support of η. The scalar b may be unknown, while ψ(·) and c(·) are known

functions. We will be discussing various forms of the unit log partition function ψ(·) and the scalar

b to denote different distributions from the family. Diaconis and Ylvisaker (1979) provides a proper

conjugate prior for η in (2) as DY(α, κ;ψ), which has the density

p(η | α, κ) ∝ exp{αη − κψ(η)}, η ∈H ,
α

κ
∈ Y , κ > 0 . (3)
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It is easily seen that the posterior distribution η | Y, α, κ ∼ DY(α+ Y, κ+ b;ψ). There are several

special cases of the DY distribution other than the Gaussian (ψ = ψ1), log-gamma (ψ = ψ2),

and logit-beta (ψ = ψ3) distributions, several of which do not correspond to a member of the

exponential family. For example, α = 0, ψ(t) = ψ4(t) = log(1 + t2/ν), and κ = (ν + 1)/2 with

ν > 0 results in a Student’s t-distribution with ν degrees of freedom.

2.2. The (Generalised) Conjugate Multivariate distribution. Bradley et al. (2020) intro-

duced a multivariate version of (3) using linear combinations of mutually independent DY random

variables. Let ζ be the n× 1 random vector

ζ = µ+ Lη , (4)

where ζ ∈M , M = {ζ : ζ = µ+Lη, η ∈H n}, µ ∈ Rn denotes a location vector, L is an n×n lower-

triangular matrix with positive diagonal elements and the n × 1 random vector η = (η1, . . . , ηn)
⊤

consists of n mutually independent DY random variables, ηi ∼ DY(αi, κi;ψ) with κi > 0 for

i = 1, . . . , n. Define ζ ∼ CM(µ,L, α, κ;ψ) with unnormalised density

p(ζ | µ,L, α, κ) ∝ exp
{
α⊤L−1(ζ − µ)− κ⊤ψ(L−1(ζ − µ))

}
det(L−1) (5)

for all ζ ∈ M , where ψ operates element-wise on L−1(ζ − µ), α = (α1, . . . , αn)
⊤ and κ =

(κ1, . . . , κn)
⊤. If ζ = (ζ⊤1 , ζ

⊤
2 )⊤ is distributed as CM(µ,L, α, κ;ψ), where ζ1 is r × 1 and ζ2 is

(n− r)× 1, then the conditional distribution of ζ1 given ζ2 is CMc(µ
∗, A1, α, κ;ψ) with

p(ζ1 | ζ2 = c2, µ
∗, A1, α, κ) ∝ exp{α⊤(A1ζ1 − µ∗)− κ⊤ψ(A1ζ1 − µ∗)} , (6)

as the unnormalised density for all (ζ⊤1 , c
⊤
2 )

⊤ ∈M . Here, A1 is defined as the n× r submatrix of

L−1 = [A1 : A2], and µ
∗ = L−1µ − A2c2 for some c2 ∈ Rn−r. The proportionality constant in (6)

is strictly positive and finite ensuring that (6) is proper (Bradley et al., 2020).

Bradley and Clinch (2024) generalise the CM distribution by relating ζ, µ, L and η as in (4),

where ζ = (ζ⊤1 , . . . , ζ
⊤
K)⊤ and η = (η⊤1 , . . . , η

⊤
K)⊤ are n×1 with n =

∑K
k=1 nk, and each element of ηk

is independently distributed as ηk,i ∼ DY(αk,i, κk,i;ψk), L is an n×n lower-triangular matrix with

positive diagonal elements and µ is an n×1 location parameter. The density is written analogously

to (5) with ζ ∈ N , N = {ζ : ζ = µ + Lη, ηk,i ∈ Hk, i = 1, . . . , nk, k = 1, . . . ,K} with Hk

being the parameter space corresponding to the log partition function ψk, αk,i/κk,i ∈ Yk, κk,i > 0

and ψ(L−1(ζ − µ)) = (ψ1(J1L
−1(ζ − µ))⊤, . . . , ψK(JKL

−1(ζ − µ))⊤)⊤, where Jk = [0 : Ink
: 0] is

nk × n and each ψk(·) operates element-wise on the vector of arguments, α = (α⊤
1 , . . . , α

⊤
K)⊤ and

κ = (κ⊤1 , . . . , κ
⊤
K)⊤ are n× 1 parameter vectors.

We say ζ is distributed as GCM(µ,L, α, κ;ψ). A conditional GCM density up to a normalising

constant is obtained analogous to (6) and denoted as GCMc(µ
∗, A1, α, κ;ψ). We use these distri-

butions for building the hierarchical models in the following sections. In general, we may be unable

to sample directly from either the conditional CM or the conditional GCM distributions except

for some familiar exceptions (e.g., the conditional distribution of Gaussian is indeed Gaussian).

However, it is possible to consider an augmented model with a particular structure that yields a

posterior distribution in the GCM family that is easy to sample from (Section 3).
4



3. Bayesian hierarchical model

3.1. Conjugate spatial-temporal process. The prevalent specification for z(ℓ) in (1) is a Gauss-

ian process. This is a special case of a “CM” process (CMP) on D. We write z(ℓ) ∼ CMP(µz(ℓ),

Vz(·, ·), αz, κz;ψz) if, for any finite collection L = {ℓ1, . . . , ℓn} ⊂ D, the n × 1 vector z(L) =

(z(ℓ1), . . . , z(ℓn))
⊤ is distributed as CM(µz(L), Lz, αz, κz;ψz), µz(L) = (µz(ℓ1), . . . , µz(ℓn))

⊤ and Lz

is the lower-triangular Cholesky factor of the n×n matrix Vz(L; θ) = (Vz(ℓi, ℓj ; θ)) for i, j = 1, . . . , n

and Vz(ℓ, ℓ
′; θ) is a spatial covariance function indexed by parameters θ. The CM process endows a

CM distribution on {z(ℓ) : ℓ ∈ L}, thereby enabling predictive inference over the entire domain D
based on partial realisations of the process. The Gaussian process is a CM process with ψz = ψ1. A

crucial extension here is to move from the real-valued process in (1) to a vector-valued process z(ℓ)

with each element following a CM process. This vector-valued process is composed of univariate

spatial-temporal process that model regression coefficients for certain predictors whose impact is

posited to vary over space and time. We elaborate below.

3.2. Conjugate Bayesian spatially-temporally varying coefficients model. Let L = {ℓ1,
. . . , ℓn} be a fixed set of n distinct space-time coordinates in D, where y(L) = (y(ℓ1), . . . , y(ℓn))

⊤ ∈
Y n, which we simply denote by y, is the vector of observed outcomes. We introduce spatially-

temporally varying coefficients as

y(ℓi) | β, z(ℓi), ξi, µi
ind.∼ EF

(
x(ℓi)

⊤β + x̃(ℓi)
⊤z(ℓi) + ξi − µi; b, ψy

)
, (i = 1, . . . , n)

zj | σzj , Lzj , αz, κz
ind.∼ CM(µzj , σzjLzj (θspj), αzj , κzj ;ψzj ), (j = 1, . . . , r)

β | σβ, Lβ, αβ, κβ ∼ CM(µβ, σβLβ, αβ, κβ;ψβ)

ξ | β, z, µ, σξ, αξ, κξ ∼ GCMc(µ̃ξ, Hξ, αξ, κξ;ψξ), θ ∼ π(θ) ,

(7)

where x(ℓi) is a p × 1 vector of predictors, β is the corresponding p × 1 vector of slopes (fixed

effects), x̃(ℓi) is the r × 1 vector (r ≤ p) consisting of those predictors in x(ℓi) that are posited to

have spatially varying regression coefficients, and zj = (zj(ℓ1), . . . , zj(ℓn))
⊤ is n×1 with each zj(ℓi)

being a spatially-temporally varying coefficient for the predictor x̃j(ℓi).

For subsequent developments, we assume that the probability law of the nr × 1 vector z =

(z⊤1 , . . . , z
⊤
r )

⊤ is derived by assuming that zj(ℓ)
ind.∼ CMP(µzj (ℓ), σ

2
zjRj(·, ·; θspj)) are a collection

of r independent CM processes with their respective parameters and log partition functions. The

spatial covariance matrix for zj is given by σ2zjLz(θspj)Lz(θspj)
⊤, where σ2zj is the spatial variance

corresponding to process zj(ℓ) and Lz(θspj) is the lower-triangular Cholesky factor of an n × n

spatial correlation matrix Rj(θspj). We model the elements of Rj(θspj) using the spatial-temporal

correlation function (see, e.g., Gneiting and Guttorp, 2010, for other examples)

Rj(ℓ, ℓ
′; θspj) =

1

ϕ1j |t− t′|2 + 1
exp

(
− ϕ2j∥s− s′∥√

1 + ϕ1j |t− t′|2

)
, ϕ1j , ϕ2j > 0 , (8)

where ℓ = (s, t) and ℓ′ = (s′, t′) are any two distinct space-time coordinates in D, ∥ · ∥ is the

Euclidean distance over S, θspj = (ϕ1j , ϕ2j), and ϕ1j and ϕ2j are positive spatial and temporal

decay parameters, respectively. For ease of notation, we drop θspj in (8) and simply write Rj(·, ·)
5



for the correlation function. The specification for each zj(ℓ) is completed with CM distribution

parameters αzj , κzj and ψzj , all specific to the jth process.

The prior for β is also a CM distribution with parameters defined analogously and the variance-

covariance parameter σ2βLβL
⊤
β , where Lβ is the Cholesky factor of a fixed correlation matrix Vβ.

The conditional prior for ξ is a GCMc distribution with the 2n × n matrix Hξ = [In : σ−1
ξ In]

⊤,

location parameter µ̃ξ = ((µ−Xβ − X̃z)⊤, σ−1
ξ µ⊤ξ )

⊤, where µ = (µ1, . . . , µn)
⊤ is n× 1, shape and

scale parameters αξ = (αϵ1
⊤
n , 0

⊤
n )

⊤ and κξ = (κϵ1
⊤
n , (1/2)1

⊤
n )

⊤, respectively, for some fixed positive

reals αϵ and κϵ. The unit log partition function ψξ is defined as ψξ(h) = (ψy(h1)
⊤, ψ1(h2)

⊤) for

any h1, h2 ∈ Rn, where ψy(·) and ψ1(·) operate element-wise on their respective arguments. We

collect the variance components into a (3r + 2)-dimensional parameter θ = (σβ, σz, σξ, θsp) where

σz = (σz1 , . . . , σzr) is r-dimensional and θsp = (θsp1, . . . , θspr) is 2r-dimensional and subsequently

assign a hyperprior π on θ. Gather the fixed and random effects into the (n+p+nr)×1 parameter

γ = (ξ⊤, β⊤, z⊤)⊤. Let µ̃ = (µ⊤, µ⊤γ )
⊤ be the (2n+p+nr)×1 vector obtained by combining µ with

the location parameters µγ = (µ⊤ξ , µ
⊤
β , µ

⊤
z )

⊤, where µz = (µ⊤z1 , . . . , µ
⊤
zr)

⊤ is nr× 1. Let q = −Q⊤µ̃,

where Q is (2n+p+nr)×n and obtained from the decomposition QQ⊤ = I2n+p+nr−H(H⊤H)−1H⊤

with the columns of Q being the n unit norm orthogonal eigenvectors of I2n+p+nr−H(H⊤H)−1H⊤

corresponding to eigenvalue 1. Hence, Q⊤Q = In and H⊤Q = 0. Furthermore, H = [(In : X :

X̃)⊤ : In+p+nr]
⊤ is (2n + p + nr) × (n + p + nr), X is n × p with x(ℓi)

⊤ as its ith row, and

X̃ = [diag(x̃1) : · · · : diag(x̃r)] is n × nr with diag(x̃j) being an n × n diagonal matrix whose ith

diagonal element is x̃j(ℓi).

We work with an improper prior on q given by p(q) ∝ 1 which follows from assuming a vague prior

on µ (see, Proposition A1 and Lemma A1 in Appendix A for technical details on the construction

of the improper prior). These specifications yield the posterior distribution

p
(
(γ⊤, q⊤)⊤ | y, θ

)
∝ GCM

(
(γ⊤, q⊤)⊤ | 02n+p+nr, V

∗(θ), α∗, κ∗;ψ∗
)
, (9)

where V ∗(θ)−1 = L(θ)−1[H : Q], L(θ) = blkdiag(In, σξIn, σβLβ, Lz(θ)) is (3n+ p)× (3n+ p) block-

diagonal with σzjLzj (θsp) as the jth block of nr× nr block-diagonal matrix Lz(θ). The shape and

scale parameters are α∗ = ((y + αϵ1n)
⊤, 0⊤n , α

⊤
β , α

⊤
z )

⊤ and κ∗ = ((b + κϵ)1
⊤
n , (1/2)1

⊤
n , κ

⊤
β , κ

⊤
z )

⊤.

The unit log partition function is ψ∗(h) = (ψy(h1)
⊤, ψ1(h2)

⊤, ψβ(h3)
⊤, ψz(h4)

⊤) for some h =

(h⊤1 , h
⊤
2 , h

⊤
3 , h

⊤
4 )

⊤ with h1, h2 ∈ Rn, h3 ∈ Rp, h4 ∈ Rnr, and, ψz(h4) = (ψz1(h41), . . . , ψzr(h4r)) for

h4j ∈ Rn, where the log partition functions operate element-wise on the arguments (see Theorem A1

in Appendix A). Generalised linear models typically assume that q is zero, which yields the posterior

distribution p(γ | y, θ) ∝ GCMc(γ | µ̃,H, α∗, κ∗;ψ∗). Recall that we cannot sample directly from

a conditional GCM distribution except for some special cases of ψy (e.g., Gaussian). Finally, we

remark that µ is crucial in producing the posterior distribution within the GCM family and, hence,

unlike in traditional generalised linear models, cannot be excluded from (7).

4. Predictive Stacking

4.1. Choice of candidate models. We specifically consider modelling count data typically origi-

nating from Poisson (ψy = ψ2) or binomial (ψy = ψ3) distributions. The choice of the log partition

functions ψβ(·) and ψzj (·) in the prior distributions of β and the jth process zj uniquely determine
6



its associated DY parameters αβ, κβ, αzj and κzj . For example, in practice, we consider a mul-

tivariate Gaussian prior β | σ2β ∼ N(0, σ2βIp) which is a special case of (7) with µβ = 0, Lβ = Ip,

αβ = 0p, κβ = (1/2)1p and ψβ = ψ1. Similarly, for each j, considering µzj (·) as the zero function,

αzj = 0n, κzj = (1/2)1n and ψzj = ψ1 implies that zj(ℓ) | σ2zj ∼ GP(0, σ2zjRj(·, ·)) is a zero-centred

Gaussian process with the spatial-temporal covariogram (8). For subsequent developments, we

proceed with zero-centred multivariate Gaussian priors on β and zj for each j, setting the location

parameters µβ and µzj for each j to be zero. We choose αϵ > 0 (called the boundary adjustment

parameter) in the prior of ξ to ensure that α∗ in (9) does not lie on the boundary of its parameter

space. For Poisson data, κϵ = 0 and for binomial data, κϵ = 2αϵ.

The prior π(θ) assumes independence for each element of θ. While fixing σξ obtained by cross-

validation procedures is possible, we place inverse-gamma priors IG(νβ/2, νβ/2) and IG(νzj/2, νzj/2)

on σ2β and σ2zj for each j respectively. We stack over candidate models specified by the different

fixed values of ∆ = (αϵ, σξ, θsp) while π(θ \ ∆) remains unchanged. Hence, a hierarchical model

(7) is uniquely characterised by the fixed value of ∆, denoted by M∆. We build the collection of

candidate models as M = {M∆ : ∆ ∈ ⊗δ∈∆Gδ} where Gδ is a grid of candidate values of δ ∈ ∆

and ⊗ denotes the Cartesian product.

4.2. Sampling from posterior. Sampling from the posterior distribution (9) for a model M∆

first requires sampling β and zj for each j from their respective marginal priors. The Gaussian

priors on β and zj and inverse-gamma priors on their variances, as specified in Section 4.1, yields the

marginal priors of β and z as central multivariate t-distributions with degrees of freedom νβ and νzj ,

respectively, for each j. This still remains in the DY family. Since [H : Q]−1 = [H(H⊤H)−1 : Q]⊤,

we compute

γ(r) = (H⊤H)−1H⊤ṽ, q(r) = Q⊤ṽ (10)

to obtain replicates (γ(r)⊤, q(r)⊤)⊤ of (γ⊤, q⊤)⊤, where the random vector ṽ = L(θ)v and v ∼
GCM(0, I3n+p, α

∗, κ∗;ψγ). The random vector ṽ = (ṽ⊤η , ṽ
⊤
ξ , ṽ

⊤
β , ṽ

⊤
z )

⊤ is made up of ṽη, where ṽη,i ∼
DY(yi+αϵ, b+κϵ;ψy) for i = 1, . . . , n and, ṽβ, ṽz = (ṽ⊤z1 , . . . , ṽ

⊤
zr)

⊤ are samples from their marginal

priors with their scale parameters integrated out and their location parameters set to zero, and ṽξ

is a sample from N(0, σ2ξIn). The random vector ṽη merits special attention as it is the posterior

sample of the n × 1 natural parameter η with ith element η(ℓi) = x(ℓi)
⊤β + x̃(ℓi)

⊤z(ℓi) + ξi − µi
(Diaconis and Ylvisaker, 1979).

The projection in (10) maps the posterior samples of η to the posterior samples of γ accounting

for the effect of its priors. It is instructive to rewrite (10) as

γ(r) =
(
H⊤

1 H1 + In+p+nr

)−1 (
H⊤

1 ṽη + ṽγ

)
, (11)

where H = [H⊤
1 : In+p+nr]

⊤ with H1 = [In : X : X̃] and ṽγ = (ṽ⊤ξ , ṽ
⊤
β , ṽ

⊤
z )

⊤. Section B of

Appendix B shows that, given ṽ, computing (11) requires O(nr3 + p3) floating point operations

(flops) and storage of O(np+ nr+ nr2 + p2) (see, Theorem A2 and Algorithm S1 in Appendix B).

We note that CM customarily uses posterior samples of β and z to draw samples from the

posterior predictive distribution p(x(ℓ)⊤β+x̃(ℓ)⊤z(ℓ)+ξ−µ | y) for any ℓ ∈ L by simply considering

x(ℓ)⊤β(r) + x̃(ℓ)⊤z(r)(ℓ), where {β(r), z(r)(ℓ)} are replicates from (9) obtained using (10), which
7



implicitly estimates µ and ξ to be zero after integrating them out of the posterior distribution

(Bradley et al., 2020; Bradley and Clinch, 2024).

4.3. Prediction. Given data observed at L, let L̃ = {ℓ̃1, . . . , ℓ̃ñ} ⊂ D \ L be a collection of ñ new

space-time coordinates in D, where we wish to predict the response and the latent spatial-temporal

processes. Let ỹ and z̃j for each j be the ñ×1 vectors with ith elements y(ℓ̃i) and zj(ℓ̃i) respectively.

For a given model, M∆, which entails a fixed value of θsp and some auxiliary model parameters,

spatial-temporal predictive inference evaluates the posterior predictive distribution,

p(ỹ, z̃ | y,M∆) =

∫
p(ỹ | β, z̃)p(z̃ | z,M∆)p(β, z | y,M∆)dβdz , (12)

where z̃ = (z̃⊤1 , . . . , z̃
⊤
r )

⊤. Sampling from (12) is facilitated by first drawing {β(r), z(r)} from

p(β, z | y,M∆) as described in Section 4.2 and then, for each drawn value z(r) of z, drawing z̃(r)

from p(z̃ | z,M∆). Further, for each posterior sample β(r) and z̃(r), we draw ỹ(r) from p(ỹ | β, z̃)
with µ in (7) set to 0. This yields samples {ỹ(r), z̃(r)} from (12). Under the prior specification of zj

and σ2zj in Section 4.1, the marginal distribution of the (n+ ñ)× 1 vector (z⊤j , z̃
⊤
j )

⊤ corresponding

to the jth process is a multivariate t-distribution tn+ñ(νzj , 0n, Ṽzj ) with νzj degrees of freedom,

location parameter 0n and (n+ ñ)× (n+ ñ) scale matrix Ṽzj = [(Rj : Cj); (C
⊤
j : R̃j)], where R̃j is

the ñ× ñ correlation matrix for z̃j , and Cj = [Rj(ℓ, ℓ
′)] is n× ñ with ℓ ∈ L, ℓ′ ∈ L̃. This yields

z̃j | zj ,M∆ ∼ tñ

(
νzj + n, C⊤

j R
−1
j zj ,

νzj + z⊤j R
−1
j zj

νzj + n
(R̃j − C⊤

j R
−1
j Cj)

)
, (j = 1, . . . , r). (13)

It is worth noticing that, the conditional scale matrix contains the factor (νzj +z
⊤
j R

−1
j zj)/(νzj +n)

which is directly related to the Mahalanobis distance of zj implying that the dispersion is enlarged

in presence of extreme values of zj . The degrees of freedom also increases by a factor n which

means that, the more data we have, the less heavy-tailed p(z̃j | zj ,M∆) becomes (Ding, 2016). The

analytic tractability as described by (13) provides further motivation behind the choice ψz = ψ1 for

practical purposes, since, an efficient way for evaluating the predictive density at an out-of-sample

point is particularly crucial in order to effectuate our stacking algorithm.

4.4. Stacking algorithm. We collect samples from p(β, z | χ, θsp, ·), where χ = {y,X, X̃,L}
denotes the data and · denotes any other parameters that are required to be conditioned for

accessible posterior sampling, for an array of candidate values of these parameters. Following

Yao et al. (2018), we devise a stacking algorithm for (7) based on predictive densities. Given

a collection of candidate models M = {M1, . . . ,ML}, we find the probability distribution in

C =
{∑L

l=1wlp(· | y,Ml) :
∑L

l=1wl = 1, wl ≥ 0
}

by solving for the optimal stacking weights w =

(w1, . . . , wL) as the solution to the optimisation problem

max
w1,...,wL

1

n

n∑
i=1

log

L∑
l=1

wlp(y(ℓi) | y−i,Ml), wl ≥ 0,

L∑
l=1

wl = 1 , (14)

where y−i denotes (y−i, X−i, X̃−i,L−i), i.e., the data with the ith observation deleted.

Solving for w in (14) involves computing the leave-one-out predictive density p(y(ℓi) | y−i,Ml) for

each i and l. For each l, the exact leave-one-out predictive densities require estimating the model
8



n times as we need to sample from (9) under Ml, given data (y−i, X−i, X̃−i,L−i), for i = 1, . . . , n.

Following Vehtari et al. (2017), we apply K-fold cross validation for faster evaluation of these

densities. We randomly permute the data and construct K blocks using consecutive indices. Let

χ[k] = (y[k], X[k], X̃[k],L[k]) be the kth block of size nk and χ[−k] = (y[−k], X[−k], X̃[−k],L[−k]) is its

complement of size (n− nk) for k = 1, . . . ,K. For each k, we fit Ml to χ[−k] as we draw S samples

{βsk,l, zsk,l}Ss=1 from p((γ⊤, q⊤)⊤ | y[−k],Ml) as given in (9).

Estimating Ml on χ[−k] requires sampling zj from its marginal prior for each j = 1, . . . , r. Each

step is dominated by the Cholesky decomposition of the (n − nk) × (n − nk) matrix Rj(L[−k]).

Instead of computing the Cholesky factor of Rj(L[−k]) for every χ[−k], which would cost O(Kn3)

flops, we execute an efficient block Givens rotation (Golub and Van Loan, 2013, Section 5.1.8) for

faster evaluation of Cholesky factors of the K submatrices of Rj(L) taking O(Kn3/4) operations

for all the blocks (see Algorithm S2 in Appendix B). Our algorithm is a block-level variant of Kim

et al. (2002). For each sample zsk,l = (zs⊤1,k,l, . . . , z
s⊤
r,k,l)

⊤ where zsk,l is (n−nk)r×1, we draw posterior

samples of z̃sk,l = (z̃s⊤1,k,l, . . . , z̃
s⊤
r,k,l)

⊤, the spatially-temporally varying nkr× 1 regression coefficients

at the nk left-out locations, L[k] using (13) as detailed in Section 4.3, which we use to evaluate

p(y(ℓi) | y−i,Ml). In particular, if y(ℓi) ∈ y[k], then

p(y(ℓi) | y−i,Ml) ≈
1

S

S∑
s=1

EF
(
y(ℓi) | x(ℓi)⊤βsk,l + x̃(ℓi)

⊤z̃sk,l(ℓi); b, ψy

)
, (15)

where r × 1 vector z̃sk,l(ℓi) = (z̃s1,k,l(ℓi), . . . , z̃
s
r,k,l(ℓi))

⊤ and EF(y0 | η0; b, ψ) is the density of

EF(η0; b, ψ) as defined in Section 2.1 evaluated at y0 ∈ Y . We repeat these steps for each of

the L models and use (15) to solve the optimisation problem (14) using convex programming.

Posterior inference for quantities of interest subsequently proceed from the “stacked posterior”,

p̃(· | y) =
L∑
l=1

ŵlp(· | y,Ml) , (16)

where ŵl are the optimal weights obtained from (14); see Algorithm S3 in Appendix B.

Unlike MCMC, this stacking algorithm easily distributes independent tasks across multiple com-

puting nodes and accrues substantial computational gains. The predictive stacking algorithm ex-

pends O(Lg + c−1LKrn3/4) flops for some g > 0, where r, L and K are as defined earlier and c

is the number of available processing cores. We use the package CVXR (Fu et al., 2020) in the

R statistical computing environment by applying disciplined convex programming (2005 Stanford

University Department of Electrical Engineering PhD thesis by M. Grant), while also confirming

the convexity of the problem, and find the stacking weights in polynomial time O(Lg) using an

interior-point algorithm. We have used the solvers Mosek (ApS, 2023) and ECOSolveR (Fu and

Narasimhan, 2023) for obtaining the stacking weights.

5. Simulation

5.1. Simulated data. We evaluate predictive performance of our proposed methods using two

simulated datasets each of sample size n, with spatial coordinates sampled uniformly inside the unit

square [0, 1]2 and temporal coordinates sampled uniformly within [0, 1]. The simulated datasets
9



are based on the natural parameter η(ℓ) = x(ℓ)⊤β + x(ℓ)⊤z(ℓ), where the latent Gaussian spatial-

temporal processes z(ℓ) = (z1(ℓ), z2(ℓ))
⊤ are modelled as zj(ℓ) ∼ GP(0, σ2zjRj(·, ·)) for j = 1, 2. In

both datasets, x(ℓ) is 2× 1 consisting of an intercept and one predictor sampled from the standard

normal distribution. We take σ2z1 = 0.25, σ2z2 = 0.5 and, (ϕ11, ϕ21) = (0.5, 2) and, (ϕ12, ϕ22) = (1, 4).

The first simulation considers responses distributed as y(ℓ) ∼ Poisson(exp(η(ℓ))) with β = (5,−0.5).
The second simulation considers binomial data with responses y(ℓ) ∼ Binomial(m(ℓ), π(ℓ)) with

m(ℓ), the number of trials sampled independently from a Poisson distribution with mean 20 and

probability of success π(ℓ) = ilogit(η(ℓ)) with ilogit(t) = exp(t)/(1 + exp(t)), t ∈ R and β =

(1,−0.5). The choice of β in each simulated data is such that the generated data do not contain

excessive zeros. The simulation experiments are conducted with n varying from 200 to 600 with a

randomly chosen holdout sample of size nh = 100 over a set of coordinates Lh.

5.2. Posterior inference. We stack on the parameters ∆ = {αϵ, σξ, θsp}, where θsp denotes the

collection of process parameters corresponding to all r spatial-temporal processes in the model. We

fit the model in (7) with appropriate choices of ψy and b, i.e., for Poisson data, ψy(t) = exp(t) and

b = 1n, and, for the binomial data, ψy(t) = log(1 + exp(t)) and b = (m(ℓ1), . . . ,m(ℓn))
⊤. For the

prior on β, we consider µβ = 0 and, Lβ = I2. For subsequent inference, we fix hyperparameters

νβ = νz1 = νz2 = 3 and consider the grid of candidate values of σξ as, Gσξ
= {0.5, 1}. The

parameters αϵ and κϵ appearing in the GCMc prior p(ξ | β, z) specify the shape and scale parameters

α∗ and κ∗ of the posterior distribution (9). If the data is on the boundary of the parameter space

with a high frequency (e.g., Poisson data with excessive zeros), then the inference is sensitive to

the choice of these parameters. This has been investigated using grid-search with an out-of-sample

criterion (Bradley and Clinch, 2024). We formally handle the value of these parameters by stacking

on several models with different choices of αϵ and κϵ. For the simulated Poisson data and the

Binomial data, we choose κϵ = 0 and κϵ = 2αϵ respectively and fix Gαϵ = {0.5, 0.75}. Finally,

we choose candidate values of the spatial-temporal decay parameters so that the corresponding

effective range is between 20% and 70% of the maximum spatial and temporal inter-coordinate

distances (see Banerjee et al., 2003, Chapter 2). Choosing a grid of candidate values for each of

these 2r process parameters results in the number candidate models to grow exponentially. In order

to negotiate this impracticality, we consider, motivated by the weak identifiability of the process

parameters, a special case of (7) which we refer to as the “reduced” model. In the reduced model,

we shrink the parameter space of θsp by considering the process parameters common across all r

spatial processes i.e., θsp1 = θsp2 = (ϕ1, ϕ2). We implement our proposed stacking algorithm on

the reduced model. We choose Gϕ1 = {0.3, 0.7, 1.2} and Gϕ2 = {1.5, 3, 4.5} and, hence, we stack

on 2 × 2 × 3 × 3 = 36 models. We use the value K = 10 for K-fold cross validation in order to

evaluate the leave-one-out predictive densities (Vehtari and Lampinen, 2002).

We also estimate a fully Bayesian model with prior distributions on the spatial process parameters

using MCMC for comparison with predictive stacking. In addition to the same priors for the model

parameters, as mentioned above, we assign uniform priors U(0.1, 15) on ϕ1j and ϕ2j for j = 1, 2.

Here, it is worth remarking that sampling from the joint posterior distribution, for example using

random walk Metropolis steps, suffers considerably from mixing and convergence issues because of
10
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Figure 1. Simulated Poisson count data: (a) posterior distributions of the intercept

as well as the slope obtained from stacking (blue) and MCMC (red) overlaid dotted

vertical line showing their true values; (b) posterior medians of spatial-temporal

random effects obtained by stacking and MCMC with the y = x reference as a red

dashed line.

the high-dimensional parameter space and weak identifiability of process parameters. This issue

is only partially mitigated using adaptive Metropolis steps (Roberts and Rosenthal, 2009). The

Gibbs sampling algorithm involves sampling from the conditional posterior distributions p(θsp |
β, z, ξ, y) and p(β, z, ξ, | θsp, y), where the former involves an adaptive Metropolis update using the

R package spBayes (Finley et al., 2015) and, the latter proceeds by sampling from (9) using the

projections described in Section 4.2. We evaluate predictive performance of our stacking algorithm

with MCMC by computing the mean log-point-wise predictive density at the held out locations,

given by MLPD = n−1
h

∑
ℓ∈Lh

log
∑L

l=1 ŵlp(y(ℓ) | y,Ml).

5.3. Results.

5.3.1. Posterior learning and predictive performance. Figure 1(a) shows the overlaid posterior den-

sities of the fixed effects obtained from the stacked posterior (blue) and MCMC (red), revealing

practically indistinguishable posterior distributions. Figure 1(b) displays high agreement between
11



Model Method
Sample size (n)

n = 100 n = 200 n = 300 n = 400 n = 500

Poisson

Stacking -7.653 -7.594 -7.579 -7.538 -7.486

rMCMC -7.515 -7.398 -7.189 -7.066 -6.957

MCMC -6.758 -6.738 -6.736 -6.716 -6.696

Binomial

Stacking -7.464 -7.449 -7.426 -7.411 -7.398

rMCMC -7.428 -7.389 -7.201 -7.182 -7.001

MCMC -6.978 -6.813 -6.747 -6.729 -6.711

Table 1. Predictive performance of stacking and MCMC. All values correspond to

mean log-pointwise predictive density (MLPD) based on 5 replications. Stacking and

rMCMC assumes the reduced model with shared process parameters while MCMC

assumes separate process parameters.

the posterior medians of the spatial-temporal random effects associated with the intercept and the

slope, obtained by our proposed stacking algorithm and MCMC. We also notice that the posterior

samples of the spatial-temporal process parameters do not necessarily concentrate around their true

values hence, demonstrating their weak identifiability. In addition, we also observe similar patterns

in the posterior distributions within the temporal (ϕ11 and ϕ12) and the spatial decay parameters

(ϕ21 and ϕ22), which further motivates the assumptions of the reduced model (see, Figure A1 in

Appendix C).

Treating the fully Bayesian model with priors on θsp which is fitted using MCMC, we find that

the predictive performance of our proposed stacking algorithm gets closer to MCMC as sample size

increases (see, Table 1). In Table 1, for Poisson count data, we see that, the difference in mean

log-pointwise predictive density of 100 held-out samples between MCMC and our proposed stacking

algorithm drops from 11.6% at sample size 100 to 10.5% at sample size 500. Furthermore, we find

that the mean log-pointwise predictive density between MCMC on the “full” model (which has 2r

process parameters) and MCMC on the reduced model drops from 10.1% at sample size 100 to

3.7% at sample size 500. We observe similar trend in case of the simulated binomial count data.

5.3.2. Runtime comparison. Figure 2 reveals that predictive stacking is, on average, about 500 times

faster than MCMC further corroborating the efficiency of predictive stacking as an alternative to

MCMC. We have implemented our predictive stacking algorithm within the R statistical computing

environment. We execute the programs for runtime comparisons on hardware equipped with an

1-Intel(R) Xeon(R) Gold 6140 CPU @ 2.30GHz processor with 36 cores and 1 thread per core,

totalling 36 possible threads for parallel computing. The runtime for predictive stacking reported

here are based on execution using 6 cores only. We compare the runtime of our proposed algorithm

with the adaptive Metropolis-within-Gibbs algorithm that implements full Bayesian inference.
12
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Figure 2. Comparison of runtimes of our proposed stacking algorithm (solid),

MCMC (dashes) and MCMC on the reduced model (dot-dash). Stacking demon-

strates significantly faster execution times across various sample sizes compared to

the MCMC algorithms.

6. North American Breeding Bird Survey

Terrestrial birds were sampled annually from routes (approximately 40.23 km with point counts

every 0.8 km) spread across the United States and Canada as part of the North American Breeding

Bird Survey (Ziolkowski Jr. et al., 2022). We analyse the number of migrant birds observed at

different locations across United States with the goal to predict their numbers at an arbitrary

location. Our key inferential objective is to evaluate how the impact from nearby vehicles and

external noise varies over space and time. For this analysis, we use 2,396 spatial coordinates over

the years 2010 through 2019 at which the number of migrant birds were recorded. We aggregated

the count data of different species within each spatial unit since very few locations recorded counts

for more than one species. We consider two explanatory variables, “car” and “noise”. The variable

‘car’ represents tallies of vehicles passing survey points during each 3-minute count, and the variable

‘noise’ reports unrelated excessive noise at each point from sources other than passing vehicles (for

example, from construction work). The presence of excessive noise is defined as noise lasting more

than 45 seconds that significantly interferes with the observer’s ability to hear birds at the location

during the sampling period. Both these variables are mapped to the same GPS coordinates in the

form of latitude and longitude that reference the avian counts.

Statistical analysis of this survey has focused on different species-level analyses with random

effects modelling variability within different levels of a factor. For example, Link and Sauer (1997)

and Sauer and Link (2011) study route-level population trajectories of a species and observer effects

using quasi-likelihood approaches and a Bayesian hierarchical log-linear model respectively. Sauer
13



Median SD 2.5% 97.5%

(Intercept) 0.891 0.234 0.530 1.207

Car 0.007 0.054 -0.116 0.093

Noise 0.005 0.304 -0.395 0.508

Average Bird Count 15.789 20.677 13.529 31.753

Table 2. North American Breeding Bird Survey (2010-19): Posterior summary

(95% credible intervals) of global regression coefficients and the average bird count

over all spatial-temporal coordinates. SD denotes standard deviation; 2.5% and

97.5% represent quantiles.

and Link (2011) elaborates on the practical difficulties arising from convergence issues compelling

a limited number of MCMC iterations for moderately large datasets. Furthermore, their model

featured random effects of much lower dimension than we have in our proposed model (7). In addi-

tion, none of the previous analyses uses spatial random effects in order to model spatial variability

in their log-linear model whereas we utilise available geographic coordinates of the routes to build

spatial-temporal processes to account for dependencies in the avian point count data within a rich

modelling framework. This framework enables us to account for large scale variation in the mean

using explanatory variables (for example the presence of excessive noise from vehicles) so the latent

process evinces the residual spatial-temporal association in bird counts that can indicate lurking

factors affecting the avian population.

We apply the spatial-temporal Poisson regression model in (7) to analyse the counts of migrant

birds at the observed locations with ‘car’ and ‘noise’ as predictors having spatially-temporally

varying regression coefficients with the correlation function as given in (8) and with the addi-

tional assumption of common process parameters ϕ1 and ϕ2 shared across all the spatial-temporal

processes. We implemented our proposed stacking algorithm with Gϕ2 = {40, 800, 1000} which con-

siders the effective spatial range to be approximately 20%, 50% and 70% of the maximum inter-site

distance, Gϕ1 = {0.5, 1, 2}, Gσξ
= {0.5, 1} and Gαϵ = {0.5, 0.75}.

Table 2 presents posterior summaries of global regression coefficients (the component that does

not vary over space and time) for the intercept, ‘car’ and ‘noise’. We find the global intercept

to be significantly larger than zero which contributes approximately 2.5 units to the count with

95% credible interval (1.7, 3.4) in the presence of no passing cars or excessive noise. Neither the

number of cars nor levels of excessive noise seem to significantly impact the count in terms of

global effects. The last row of Table 2 presents the estimated bird count averaged over all observed

spatial-temporal coordinates in the data set. This estimate is obtained from the posterior predictive

distribution of the average bird count and provides us with an estimate of the relative influence of

the spatially-temporally varying component over the global effects. To be precise, we see that the

spatially-temporally varying component of the regression increases the estimate of counts (≈ 16) by

a factor of 6 times over the 2.5 units contributed by the global effects. This estimate of the average

bird count is consistent with what one would obtain from customary generalised linear models with
14
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Figure 3. North American Breeding Bird Survey (2010-19): Interpolated surfaces

of posterior median of spatial-temporal random effects in the slope of the variables

(a) ‘car’ and, (b) ‘noise’ obtained by our proposed stacking algorithm.

fixed effects only, but we also offer the spatially and temporally varying impact of predictors that

are not captured by the global regression.

Figures 3(a) and (b) reveal how the impact of the predictors ‘car’ and ‘noise’ vary over space and

time. For example, in Fig. 3(a) we see significant positive impact (red) of ‘car’ in the Niland and

Palo Verde regions of Imperial county, California, (southwest corner of the map) rather consistently

between 2010 and 2012. These elevated spatial-temporal coefficients along with higher numbers

of cars in these regions (not shown) produce higher than average estimates of bird counts there.

We observe a similar pattern in parts of North Dakota and South Dakota between 2015 and 2019.

Fig. 3(b) reveals a positive impact (red) of ‘noise’ in the spatial-temporal random effects in northern

Minnesota from 2011 to 2015. While this area experiences persistently low levels of ‘noise’ (not

shown) the high values of the coefficients produce higher than average estimates of bird counts. In

summary, these spatially-temporally varying coefficients represent the local impact of predictors

that adjusts the global effects from Table 2. Appendix D presents further details of this analysis.

Lastly, we note that while our proposed stacking algorithm delivered inference in 30 minutes using

6 cores, implementing the adaptive Metropolis-within-Gibbs algorithm anticipates at least 15,000
15



iterations for convergence with each iteration taking 1.3 minutes on average. Hence, our proposed

stacking algorithm offers speed-ups of over 650 times over MCMC.

7. Discussion

We have devised and demonstrated Bayesian predictive stacking to be an effective tool for es-

timating spatially-temporally varying regression coefficients and yielding robust predictions for

non-Gaussian spatial-temporal data. We develop and exploit analytically accessible distribution

theory pertaining to Bayesian analysis of generalised linear mixed models that enables us to di-

rectly sample from the posterior distributions. The focus of this article is on effectively combining

inference across different closed-form posterior distributions by circumventing inference on weakly

identified parameters. Future developments and investigations will consider zero-inflated Bernoulli

data for which the current approach will require a boundary adjustment parameter to ensure that

the posterior distribution is well-defined. In this context, Bradley and Clinch (2024) explore flexible

choices of H to improve inference for zero-inflated Bernoulli data, although they lose the computa-

tional benefits arising from the structured H in our spatially-temporally varying coefficients model.

Exploring predictive stacking for alternate specifications of H and, in particular, for zero-inflated

binary data will comprise future research endeavours. Finally, our method can be adapted to

variants of Gaussian process models that scale inference to massive datasets (Datta et al., 2016;

Banerjee, 2017; Heaton et al., 2019) by circumventing the Cholesky decomposition of dense covari-

ance matrices. Other directions can include building more general frameworks to accommodate

irregular dispersion and analysis of zero-inflated count data.
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of skew-elliptical link models for correlated binary data. Biometrics (To appear in), 2022.

David Ziolkowski Jr., Michael Lutmerding, Veronica Aponte, and Marie-Anne Hudson. North

American Breeding Bird Survey Dataset 1966 - 2021: U.S. Geological Survey data release, 2022.

URL https://doi.org/10.5066/P97WAZE5.

19

http://www.jstor.org/stable/2533952
http://www.jstor.org/stable/2533952
https://doi.org/10.1198/jcgs.2009.06134
https://doi.org/10.1198/jcgs.2009.06134
http://www.jstor.org/stable/10.1525/auk.2010.09220
http://www.jstor.org/stable/10.1525/auk.2010.09220
https://doi.org/10.1162/08997660260293292
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.5066/P97WAZE5


Appendix to “Bayesian inference for spatial-temporal non-Gaussian data

using predictive stacking”

Appendix A. Distribution theory

We outline relevant distribution theory for deriving the posterior distribution of different model

parameters in the Bayesian hierarchical model (7) in the main article. Our contribution lies in

proving two important results, Proposition A1 and Lemma A1, that justifies constructing the

improper prior for the parameter q, also referred to as the discrepancy parameter (Bradley et al.,

2020) and has not been addressed hitherto (Bradley and Clinch, 2024, Theorem 3.1). We assume

familiarity with the notations introduced in Section 3 of the main article.

Proposition A1. If H = [(In : Xn×p : X̃n×nr)
⊤ : In+p+nr]

⊤ and Q = [Q⊤
1 : Q⊤

2 ]
⊤, where Q is

(2n+ p+ nr)× n with Q1 being n× n and Q2 being (n+ p+ nr)× n, such that the n columns of

Q are the unit norm orthogonal eigenvectors of the orthogonal projector, PH , on the column space

of H, then rank(Q1) = n.

Proof. From our definitions, we note that QQ⊤ = I2n+p+nr−PH , PH = H(H⊤H)−1H⊤, Q⊤H = 0

and rank(Q) = n. Define H1 = [In : X : X̃]. It follows from Q⊤H = 0 that, Q⊤
1 H1 + Q⊤

2 = 0

and subsequently, Q2 = −H⊤
1 Q1, implying that R(Q2) ⊆ R(Q1) where R denotes row space of a

matrix. Hence the rank of Q must equal dim(R(Q1)), the number of independent rows of Q1. As

rank(Q) = n, we have rank(Q1) = dim(R(Q1)) = n. □

Lemma A1. In the hierarchical model (7), assumption of a vague prior on the parameter µ leads

to the improper prior on the parameter q, given by p(q) ∝ 1.

Proof. Recall that q = −Q⊤µ̃ where µ̃ = (µ⊤, µ⊤γ )
⊤ with µγ = (µ⊤ξ , µ

⊤
β , µ

⊤
z )

⊤ and Q is the (2n +

p + nr) × n matrix defined in Proposition A1. Partition Q = [Q⊤
1 : Q⊤

2 ]
⊤ where Q1 is n × n

and Q2 is (n + p + nr) × n to get q = −Q⊤
1 µ − Q⊤

2 µγ . Consider the sequence of priors on the

discrepancy parameter as p1,k(µ) = N (µ | 0n, τkIn) for a real sequence {τk}k∈N with τk > 0, ∀k ∈ N
such that limk τk = +∞. By Proposition A1, for any k, the prior on q induced by p1,k has the

density p2,k(q) = N (q | −Q⊤
2 µγ , τkQ

⊤
1 Q1). Hence, the improper density p2(q) ∝ 1 arises from

limk p2,k(q) = p2(q) for any q ∈ Rn. □

Next, we derive the posterior distribution in (9) corresponding to the hierarchical model (7)

in the main article. The following result adapts the spatial intercept model of Theorem 3.1 in

Bradley and Clinch (2024) to our spatially-temporally varying coefficient model. This extension is

not entirely straightforward because of the introduction of possibly different explanatory variables

in the fixed regression (X) and the spatially-temporally varying component (X̃) in our model.

Theorem A1. The hierarchical model (7), with p(q) ∝ 1 leads to

p
(
(γ⊤, q⊤)⊤ | y, θ

)
∝ GCM

(
(γ⊤, q⊤)⊤ | 02n+p+nr, V

∗(θ), α∗, κ∗;ψ∗
)
,

where V ∗(θ)−1 = L(θ)−1[H : Q], (3n+ p)× (3n+ p) block-diagonal matrix L(θ) = blkdiag(In, σξIn,

σβLβ, Lz(θ)) with σzjLzj (θsp) as the jth block of nr × nr block-diagonal matrix Lz(θ). The shape
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and scale parameters are α∗ = ((y+αϵ1n)
⊤, 0⊤n , α

⊤
β , α

⊤
z )

⊤ and κ∗ = ((b+κϵ)1
⊤
n , (1/2)1

⊤
n , κ

⊤
β , κ

⊤
z )

⊤.

The unit log partition function ψ∗ is ψ∗(h) = (ψy(h1)
⊤, ψ1(h2)

⊤, ψβ(h3)
⊤, ψz(h4)

⊤) for some h =

(h⊤1 , h
⊤
2 , h

⊤
3 , h

⊤
4 )

⊤ with h1, h2 ∈ Rn, h3 ∈ Rp, h4 ∈ Rnr, and, ψz(h4) = (ψz1(h41), . . . , ψzr(h4r)) for

h4j ∈ Rn, where all of the log partition functions operate element-wise on the arguments.

Proof. Define the (n+ p+ nr)× 1 random vector γ = (ξ⊤, β⊤, z⊤)⊤. Then the likelihood is

p(y | γ, µ) = exp
{
y⊤(Xβ + X̃z + ξ − µ)− b1Tnψy(Xβ + X̃z + ξ − µ)

}
= exp

{
y⊤
([
In X X̃

]
γ − µ

)
− b1Tnψy

([
In X X̃

]
γ − µ

)}
.

(A1)

According to Section 2.2, the densities of CM priors for β | θ and z | θ are

p(β | θ) ∝ exp
{
α⊤
β Lβ(θ)

−1(β − µβ)− κ⊤β ψβ(Lβ(θ)
−1(β − µβ))

}
,

p(z | θ) ∝ exp
{
α⊤
z Lz(θ)

−1(z − µz)− κ⊤z ψz(Lz(θ)
−1(z − µz))

}
,

(A2)

where nr × nr matrix Lz(θ) = ⊕r
j=1σzjLzj (θspj). And the conditional prior p(ξ | β, z, θ) is

p(ξ | β, z, µ, θ) ∝ exp

{
α⊤
ξ

([
In

Lξ(θ)
−1

]
ξ −

[
µ−Xβ − X̃z
Lξ(θ)

−1µξ

])

−κ⊤ξ ψξ

([
In

Lξ(θ)
−1

]
ξ −

[
µ−Xβ − X̃z
Lξ(θ)

−1µξ

])}

= exp

{
α⊤
ξ

([
In X X̃

Lξ(θ)
−1 0 0

]
γ −

[
µ

Lξ(θ)
−1µξ

])

−κ⊤ξ ψξ

([
In X X̃

Lξ(θ)
−1 0 0

]
γ −

[
µ

Lξ(θ)
−1µξ

])}
,

(A3)

where the last step follows from equality[
In

Lξ(θ)
−1

]
ξ −

[
µ−Xβ − X̃z
Lξ(θ)

−1µξ

]
=

[
In X X̃

Lξ(θ)
−1 0 0

]
γ −

[
µ

Lξ(θ)
−1µξ

]
.

Hence, combining (A2) and (A3) yields the joint prior density p(γ | µ, θ) as

p (γ | µ, θ) ∝ exp

(α⊤
ξ , α

⊤
β , α

⊤
z )




In X X̃

Lξ(θ)
−1 0 0

0 Lβ(θ)
−1 0

0 0 Lz(θ)
−1


ξβ
z

−


µ

Lξ(θ)
−1µξ

Lβ(θ)
−1µβ

Lz(θ)
−1µz




−(κ⊤ξ , κ⊤β , κ⊤z )ψ∗




In X X̃

Lξ(θ)
−1 0 0

0 Lβ(θ)
−1 0

0 0 Lz(θ)
−1


ξβ
z

−


µ

Lξ(θ)
−1µξ

Lβ(θ)
−1µβ

Lz(θ)
−1µz



 ,

(A4)

where ψ∗(h) = (ψy(h1)
⊤, ψ1(h2)

⊤, ψβ(h3)
⊤, ψz(h4)

⊤) for some h = (h⊤1 , h
⊤
2 , h

⊤
3 , h

⊤
4 )

⊤ with h1, h2 ∈
Rn, h3 ∈ Rp, h4 ∈ Rnr, and, ψz(h4) = (ψz1(h41), . . . , ψzr(h4r)) for h4j ∈ Rn, where all the log
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partition functions operates element-wise on the arguments. Hence, assuming p(q) ∝ 1, we obtain

p
(
(γ⊤, q⊤)⊤ | y, θ

)
∝ exp

{
(y⊤ + αϵ1

⊤
n , 0

⊤
n , α

⊤
β , α

⊤
z )L(θ)

−1(Hγ − µ̃)

−((b+ κϵ)1
⊤
n ,

1

2
1⊤n , κ

⊤
β , κ

⊤
z )ψ

∗L(θ)−1(Hγ − µ̃)
}

= exp
{
α∗⊤L(θ)−1(Hγ − µ̃)− κ∗⊤ψ∗(L(θ)−1(Hγ − µ̃))

} (A5)

by combining (A1) and (A4). Now, reparameterise by q = −Q⊤µ̃, which, by definition of Q (see

Section 3.2), is equivalent to µ̃ = −Qq, and, thus from (A5), we obtain

p
(
(γ⊤, q⊤)⊤ | y, θ

)
= exp

{
α∗⊤L(θ)−1[H : Q]

[
γ

q

]
− κ∗⊤ψ∗

(
L(θ)−1[H : Q]

[
γ

q

])}
∝ GCM

(
(γ⊤, q⊤)⊤ | 03n+p, V

∗(θ), α∗, κ∗;ψ∗
)
.

(A6)

□

Appendix B. Computational details

This section evolves as follows. First, we present Theorem A2 that provides a computationally

efficient way to evaluate the projection expression in (11) in the main article and subsequently

provide a memory-efficient algorithm implementing Theorem A2. Next, we outline the algorithm

for fast Cholesky factor updates required for the cross-validation step, as detailed in Section 4.4 of

the main article. Lastly, we summarise our proposed stacking algorithm in Algorithm S3.

Once the Cholesky factors are computed, we are able to obtain the samples, ṽz, from the marginal

prior of z. Given ṽ, following Section 4.2, it is clear that naive evaluation of γ(r) = (H⊤H)−1H⊤ṽ

requires expensive matrix operations on an (n+ p+ nr)× (n+ p+ nr) matrix H⊤H. Theorem A2

derives a computationally efficient algorithm to evaluate this projection.

Theorem A2. Given ṽ, the projection expression in (11) can be computed in O(nr3 + p3) flops

and requires a storage of O(np+ nr + nr2 + p2).

Proof. Note that H = [(In : X : X̃)⊤ : In+p+nr]
⊤ is a (2n + p + nr) × (n + p + nr) matrix where

X̃ = [diag(x̃1) : · · · : diag(x̃r)] is n × nr with diag(x̃j) being an n × n diagonal matrix whose ith

diagonal element is x̃j(ℓi). Without loss of generality, we consider a permutation of the columns

of X̃ and a subsequent suitable permutation on z = (z⊤1 , . . . , z
⊤
r ) such that the new X̃ = ⊕n

i=1x̃
⊤
i

and z = (z⊤(1), . . . , z
⊤
(n))

⊤ where z(i) = (z1(ℓi), . . . , zr(ℓi))
⊤. Note that we can always rearrange the

obtained vector back to the original ordering by applying the inverse of the permutation. The idea

of the proof follows from inversion of a partitioned matrix. Write

H⊤H =

2In X X̃

X⊤ X⊤X + Ip X⊤X̃

X̃⊤ X̃⊤X X̃⊤X̃ + Inr

 =

[
A B⊤

B D

]
, (A7)

where B = [X̃⊤ : X̃⊤X] and D = X̃⊤X̃ + Inr. Note that (H⊤H)−1H⊤ṽ can be simplified as

(H⊤H)−1H⊤ṽ =

[
S−1
A (v1 −B⊤D−1v2)

−D−1BS−1
A (v1 −B⊤D−1v2) +D−1v2

]
, (A8)
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where v1 = ((ṽη+ ṽξ)
⊤, (X⊤ṽη+ ṽβ)

⊤)⊤, v2 = (X̃⊤ṽη+ ṽz)
⊤ and SA denotes the Schur complement

of A in (A7). Define v3 = v1 − B⊤D−1v2 and rewrite it as v1 − [(X̃v4)
⊤, (X⊤X̃v4)

⊤]⊤ where

v4 = (X̃⊤X̃+Inr)
−1v2. Note that v4 can be evaluated efficiently since (X̃⊤X̃+Inr)

−1 = ⊕n
i=1(x̃ix̃

⊤
i +

Ir)
−1 is block diagonal. This involves n inversions of r × r positive definite matrices and hence

evaluation of v4 involves O(nr3) operations. Next, we move on to inversion of the Schur complement

SA = A−B⊤D−1B. Note that B⊤D−1B = [In : X]⊤X̃(X̃⊤X̃+Inr)
−1X̃⊤[In : X]. We use (X̃⊤X̃+

Inr)
−1X̃⊤ = X̃⊤(X̃X̃⊤+In)

−1 which follows from the equality X̃⊤(X̃X̃⊤+In) = (X̃⊤X̃+Inr)X̃
⊤.

Hence we have X̃(X̃⊤X̃+Inr)
−1X̃⊤ = X̃X̃⊤(X̃X̃⊤+In)

−1 = diag(∥x̃i∥2/(1+∥x̃i∥2), i = 1, . . . , n) =

P̃ (say). Then, writing v3 = (v⊤51, v
⊤
52)

⊤,

SA =

[
A∗ B⊤

∗
B∗ D∗

]
, S−1

A v3 =

[
A−1

∗ v51 +A−1
∗ B⊤

∗ S
−1
D∗

(B∗A
−1
∗ v51 − v52)

−S−1
D∗

(B∗A
−1
∗ v51 − v52)

]
, (A9)

where v51 is n×1, v52 is p×1 and, A∗ = 2In− P̃ , B∗ = X⊤(In− P̃ ), D∗ = X⊤(In− P̃ )X+Ip. Note

that A−1
∗ = (2In − P̃ )−1 is again a diagonal matrix with diagonal elements (1 + ∥x̃i∥2)/(2 + ∥x̃i∥2)

for i = 1, . . . , n. Hence, we evaluate v6 = B∗A
−1
∗ v51−v52 = X⊤diag(1/(2+∥x̃i∥2))v51−v52. Finally,

we find the inverse of SD∗ , the p× p Schur complement of D∗, by simplifying as

SD∗ = D∗ −B∗A
−1
∗ B⊤

∗

= X⊤(I − P̃ )X + Ip −X⊤(In − P̃ )(2In − P̃ )−1(In − P̃ )X

= Ip +X⊤
[
diag

(
1

1 + ∥x̃i∥2

)
− diag

(
1

1 + ∥x̃i∥2

)
diag

(
1 + ∥x̃i∥2

2 + ∥x̃i∥2

)
diag

(
1

1 + ∥x̃i∥2

)]
X

= Ip +X⊤diag

(
1

2 + ∥x̃i∥2

)
X.

(A10)

Inverting SD∗ takes O(p3) operations thus completing the evaluation of S−1
A v3. We subsequently

find D−1BS−1
A v3 using the already computed block inverses of the matrix D. □

Next, Algorithm S1 provides a memory-efficient step-by-step implementation of Theorem A2.

It proceeds by considering the n× nr predictor matrix X̃ with permuted columns as described in

Theorem A2. Subsequently ṽz is also permuted adapting to the new X̃. This requires memory

allocations for one nr×1 vector v1, two n×1 vectors v2 and v4, one p×1 vector v3, an n-dimensional

list {Di : i = 1, . . . , n} with each item storing one r× r matrix and one p×p matrix D∗, amounting

to allocated storage of O(n + p + nr + p2 + nr2). Throughout Algorithm S1, while v2,i and v4,i

correspond to the ith element of the n× 1 vectors v2 and v4, respectively, v1,i denotes the ith r× 1

block of the nr × 1 vector v1 corresponding to the indices running from (i− 1)r + 1 to ir for each

i = 1, . . . , n. The functions chol and trsolve compute the standard Cholesky decomposition and

the solution of a triangular linear system, respectively, and are readily available in numerical linear

algebra libraries. Algorithm S1 has been designed to avoid expensive linear algebra, consisting of

n Cholesky decompositions of r × r matrices, one Cholesky decomposition of a p × p matrix, 2n

triangular solvers each of order O(r), and one additional O(p) triangular solve.

Next, we supply a block Givens rotation algorithm (Golub and Van Loan, 2013, Section 5.1.8)

for faster model evaluation during cross-validation. Our algorithm is a block-level variant of Kim
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Algorithm S1 Computationally efficient algorithm for projection (see, Theorem A2)

1: Input: X, X̃, ṽη, ṽξ, ṽβ, ṽz

2: Output: Posterior samples of γ = (ξ⊤, β⊤, z⊤)⊤

3: Storage: Pre-allocate v1, v2, v3, v4, {Di : i = 1, . . . , n}, D∗

4: function projection(X, X̃, ṽη, ṽξ, ṽβ, ṽz)

5: v1 ← X̃⊤ṽη + ṽz

6: for i = 1 to i = n do

7: Di ← chol
(
x̃ix̃

⊤
i + Ir

)
8: v1,i ← trsolve(Di, v1,i)

9: v2 ← ṽη − X̃v1
10: v3 ← X⊤v2 + ṽβ

11: v2 ← v2 + ṽξ

12: for i = 1 to i = n do v4,i ← v2,i/(2 + ∥x̃i∥2)

13: v3 ← X⊤v4 − v3
14: D∗ ← chol

(
Ip +X⊤diag

(
1

2+∥x̃i∥2

)n
i=1

X
)

15: v3 ← trsolve(D∗, v3)

16: v4 ← Xv3

17: v2 ← diag
(
1+∥x̃i∥2
2+∥x̃i∥2

)n
i=1

v2 + diag
(

1
2+∥x̃i∥2

)n
i=1

v4

18: v4 ← v2 − v4
19: for i = 1 to i = n do

20: v1,i ← trsolve(Di, v4,ix̃i)

21: return (v⊤2 ,−v⊤3 ,−v⊤1 )⊤

et al. (2002). Following the setup preceding Algorithm S3, suppose the kth block χ[k] for each k

contains adjacent indices of the data χ. Moreover, suppose evaluating a model needs Cholesky

decomposition of a n×n positive-definite matrix R, where n is the number of observations in χ. In

the context of (7), R corresponds to the correlation matrix of a spatial-temporal process. Suppose

we have evaluated the model on the full data, and we have stored L, the upper triangular Cholesky

factor of R. The consecutive indices of the partitioned data creates K2 submatrices partitioning R

and its upper triangular Cholesky factor L as,

R =


R11 R⊤

21 · · · R⊤
K1

R21 R22 · · · R⊤
K2

...
...

. . .
...

RK1 RK2 · · · RKK

 , L =


L11 L12 · · · L1K

0 L22 · · · L2K

...
...

. . .
...

0 0 · · · LKK

 .
For each k such that 1 < k < K, consider the following representation of the matrices R, L, R−k,

the matrix corresponding to χ[−k] and its upper triangular Cholesky factor L−k.

R =

Rk
11 Rk⊤

21 Rk⊤
31

Rk
21 Rk

22 Rk⊤
32

Rk
31 Rk

32 Rk
33

 , L =

Lk
11 Lk

12 Lk
13

0 Lk
22 Lk

23

0 0 Lk
33

 , R−k =

[
Rk

11 Rk⊤
31

Rk
31 Rk

33

]
, L−k =

[
Ck
11 Ck

13

0 Ck
33

]
,
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where Rk
22 = Rkk. Then, Algorithm S2 finds L−k for each k = 1, . . . ,K. In Algorithm S2, note

that, no computation is needed to find L−K and Ck
11, C

k
13 for 1 < k < K.

Algorithm S2 Fast Cholesky updates of row-deletion using block Givens rotation.

1: Input: R, L, k; full matrix, its upper-triangular Cholesky factor, block to be deleted

2: Output: L−k, the Cholesky factor of R−k, the matrix with kth block deleted

3: function choleskyCV(R, L, k)

4: if k = 1 then

5: L−k ← chol(R−k)

6: else

7: if 1 < k < K then

8: Ck
11 ← Lk

11 (pre-computed)

9: Ck
13 ← Lk

13 (pre-computed)

10: Ck
33 ← chol(Lk⊤

33 L
k
33 + Lk⊤

23 L
k
23)

11: else

12: L−k = upper left (K − 1)× (K − 1) submatrices of L (pre-computed)

13: return L−k

It is worth remarking that the “naive approach” for obtaining L−k involves Cholesky decompo-

sition of Rk for each k, and, hence, requiring K−2(K − 1)3n3/3 floating point operations (flops).

On the other hand, the time complexity of Algorithm S2 is in the order of

K∑
k=1

(
1− k

K

)3 n3

3
=

n3

3K3

K−1∑
k=1

i3 =
n3

3K3

K2(K − 1)2

4
=

(K − 1)2

4K

n3

3
,

where the penultimate step follows from the sum of cubes of natural numbers. Hence, we show that

Algorithm S2 is theoretically 4(K−1)/K times faster than the naive approach. If K = 10 (Vehtari

and Lampinen, 2002), then Algorithm S2 theoretically offers approximately 72% efficiency in time

complexity over the naive approach. However, it must be noted that modern linear algebra libraries

are highly vectorised and are often multithreaded. Hence, it is difficult to accurately translate these

purely theoretical flop counts to actual wall clock time. Nevertheless, Algorithm S2 is more efficient

than the naive approach.

Lastly, we detail the algorithm for implementing our proposed stacking framework utilising the

aforementioned algorithms. Algorithm S3 outlines the steps required for estimating the spatially-

temporally varying coefficients model (7) in the main article. The inputs X and X̃ in Algorithm S3

correspond to the design matrices appearing in (7), L denotes spatial-temporal locations, N denotes

number of posterior samples to be drawn, B denotes the number of samples to be drawn for

evaluating the leave-one-out predictive densities as described in (15),M = {M1, . . . ,ML} denotes
the collection of L candidate models andK denotes the number of folds for cross-validation required

for fast evaluation of leave-one-out predictive densities. Following a random permutation of the

entire dataset, we construct a partition using consecutive indices of the permuted data. This

step significantly accelerates evaluation of Cholesky factors using block Givens rotation (Golub
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and Van Loan, 2013) required during the cross-validation step detailed in Algorithm S2. After

partitioning the data, which is denoted by χ = (y,X, X̃,L) into K blocks, each block is denoted by

χ[k] and the data with the kth block deleted is denoted by χ[−k] for k = 1, . . . ,K. Algorithm S3 is

written in a richer and more general context and can be easily adapted to spatial, spatial-temporal,

spatially and spatially-temporally varying coefficients models.

Algorithm S3 Predictive stacking algorithm for spatially-temporally varying coefficients GLM

1: Input: y, X, X̃, L, N , B,M, K

2: Output: Posterior samples for each model inM, optimal stacking weights ŵ

3: function stvcGLM stacking(y,X, X̃,L, N,B,M,K)

4: Partition the data χ into K blocks χ[1], . . . , χ[K], each containing consecutive indices

5: for l = 1 to l = L do

6: Fit model Ml on χ and obtain posterior samples {βml , zml }Nm=1 using (11)

7: for k = 1 to k = K do

8: Fit model Ml on χ[−k] and obtain posterior samples {βsk,l, zsk,l}Ss=1 using (11)

9: for s = 1 to s = S do

10: Use (13) to predict the spatial-temporal process z̃sk,l at L[k] from zsk,l

11: Use (15) to find p(y(ℓi) | y−i,Ml), ℓi ∈ L[k]
12: Optimise (14) to obtain optimal stacking weights ŵ

13: return Optimal model weights ŵ, Posterior samples {βml , zml }Nm=1 for l = 1, . . . , L

Appendix C. Additional details on simulation experiments

We present some additional results from the simulation experiments carried out in Section 5 of

the main article. Consider the simulated Poisson count data under the spatially-temporally vary-

ing coefficient model (7) as described in Section 5.1. Figure A1 presents the posterior distributions

of the process parameters that characterise the two spatial-temporal processes z1 and z2, corre-

sponding to the intercept (ϕ11 and ϕ21) and the predictor (ϕ21 and ϕ22) respectively, obtained by

MCMC (see Section 5.2). None of the process parameters in Fig. A1 have concentrated around

their corresponding true values, illustrating their weak identifiability. We also notice similarity in

the posterior distributions of the temporal decay parameters ϕ11 and ϕ12 for both the processes z1

and z2 respectively. The same phenomenon is noticed in the posterior distributions of the spatial

decay parameters ϕ21 and ϕ22. This between-process similarity in the posterior learning of the pro-

cess parameters justifies the tenability of the “reduced” model that uses common spatial-temporal

process parameters across all the r processes in (7). This reduces the parameter space by r folds.

The reduced model further effectuates a substantial decrease in the number of candidate models

required for the proposed stacking algorithm.

Moreover, in addition to Fig. 1 in the main article, where we plot the posterior medians of

the spatial-temporal random effects for the simulated Poisson count data, Figure A2 plots 100

quantiles of the combined posterior samples of spatial-temporal random effects obtained by stacking

against quantiles obtained from MCMC. This demonstrates strong agreement between the posterior
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Figure A1. Histograms of posterior samples of the spatial-temporal process pa-

rameters obtained by MCMC on a fully Bayesian model on a simulated Poisson

count data of sample 100.
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Figure A2. Plot of quantiles of the posterior distributions of the spatial-temporal

random effects corresponding to (a) intercept and, (b) predictor obtained by stacking

against MCMC with the y = x reference as a red dashed line.

distributions obtained from the competing algorithms with most of the points concentrated along

they = x line (red dashed).
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Figure A3. Comparison of interpolated surfaces of (a) the true spatial effects, with

posterior median of spatial effects obtained by (b) MCMC, and, (c) our proposed

predictive stacking algorithm on a simulated spatial count data.

We also present results from an additional simulation experiment that demonstrates posterior

learning of a random field modelling the underlying spatial or spatial-temporal processes. For

convenient visualisation of the random field, we consider spatial data instead of spatial-temporal

data in a continuous time domain. We simulate a dataset with responses distributed as y(s) ∼
Poisson(exp(x(s)⊤β+ z(s)) with sample size 1000. The locations are sampled uniformly inside the

unit square [0, 1]2. The explanatory vector x(s) consists of an intercept and one predictor sampled

from the standard normal distribution and the regression coefficients are taken as β = (5,−0.5).
The latent spatial process z(s) ∼ GP(0, σ2zR(·, ·;ϕ, ν)) is a zero-centred Gaussian process with

σ2z = 0.4, ϕ = 3.5 and ν = 0.5, where R(·, ·;ϕ, ν) is the Matérn correlation function,

R(s, s′;ϕ, ν) =
(ϕ|s− s′|)ν

2ν−1Γ(ν)
Kν(ϕ|s− s′|)) , (A11)

|s− s′| is the Euclidean distance between s and s′, and θsp = {ϕ, ν}. The parameter ν > 0 controls

the smoothness of the realised random field, ϕ is the spatial decay parameter, Γ(·) denotes the

gamma function, and Kν is the modified Bessel function of the second kind of order ν (Abramowitz

and Stegun, 1965, Chapter 10). The model in (7) can be modified for accommodating a spatial re-

gression by considering r = 1 and subsequently X̃ = In. Here, S is the domain of interest. We stack

on the parameters ∆ = {αϵ, σξ, ϕ, ν} with hyperparameters νβ = νz = 3. We also implement a fully

Bayesian model with uniform priors U(0.5, 10) for ϕ and U(0.1, 2) for ν. We modify our adaptive

Metropolis-within-Gibbs algorithm accordingly. Figure A3 compares the posterior distributions of

the spatial random effects obtained by predictive stacking and MCMC with its true values. We

observe indistinguishable spatial surfaces of the posterior medians of the spatial random effects.

Appendix D. Additional data analysis

We offer some additional data analysis from the North American Breeding Bird Survey to sup-

plement the results in Section 6 of the main article. In the survey, the data are collected annually

during the breeding season, primarily in June, along thousands of randomly established roadside

survey routes in the United States and Canada. Routes are roughly 24.5 miles (39.2 km) long
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with counting locations placed at approximately half-mile (800 m) intervals, for a total of 50 stops.

At each stop, a citizen scientist, highly skilled in avian identification, conducts a 3-minute point

count recording all birds seen within a quarter-mile (400 m) radius and all birds heard. Routes are

sampled once per year. In addition to avian count data, this dataset also contains route location

information including country, state and the geographic coordinates of the route start point. The

variable ‘car’ records the total number of motorised vehicles passing a particular point count stop

during the 3-minute count period. The variable ‘noise’ represents the presence/absence of excessive

noise defined as noise from sources other than vehicles passing the survey point (e.g. from streams,

construction work, vehicles on nearby roads, etc.) lasting 45 seconds that significantly interferes

with the observer’s ability to hear birds at the stop during the 3-minute count period. More in-

formation on the survey can be found online at BBS 2022 data release (https://www.usgs.gov/

data/2022-release-north-american-breeding-bird-survey-dataset-1966-2021).

The main article discusses the global regression coefficients. Figures A4 and A5 display side-by-

side plots of the observed point counts and interpolated spatial surfaces of the posterior median of

the processes assigned to the intercept and the predictors ‘car’ and ‘noise’, revealing clear spatial-

temporal patterns in the effect of the predictors.
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Figure A4. (a)–(e) Observed avian point count data and interpolated surfaces of

posterior median of spatial-temporal random effects in the intercept as well as slopes

of the variables ‘car’ and ‘noise’ for years 2010-2014.
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Figure A5. (f)–(k) North American Breeding Bird Survey (2015-19): Observed

avian point count data and interpolated surfaces of posterior median of spatial-

temporal random effects in the intercept as well as slopes of the variables ‘car’ and

‘noise’ for years 2015-2019.
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