
spStack: Practical Bayesian Geostatistics Using
Predictive Stacking in R

Soumyakanti Pan
University of California

Los Angeles

Sudipto Banerjee
University of California

Los Angeles

Abstract

Statistical modeling and analysis for spatially oriented point-referenced outcomes play
a crucial role in diverse scientific applications such as earth and environmental sciences,
ecology, epidemiology, and economics. With the advent of Markov chain Monte Carlo
(MCMC) algorithms, Bayesian hierarchical models have gained massive popularity in an-
alyzing such point-referenced or, geostatistical data. However, these models involve latent
spatial processes characterized by spatial process parameters, which besides lacking sub-
stantive relevance in scientific contexts, are also weakly identified and hence, impedes
convergence of MCMC algorithms. Thus, even for moderate sized datasets, the compu-
tation for MCMC becomes too onerous for practical use. In this article, we introduce
the R package spStack that delivers fast Bayesian inference for a class of geostatistical
models, where we obviate these issues by sampling from analytically available posterior
distributions conditional upon candidate values of the spatial process parameters and, sub-
sequently assimilate inference from these individual posterior distributions using Bayesian
predictive stacking. Besides delivering competitive predictive performance as compared
to fully Bayesian inference using MCMC, our proposed algorithm is executable in parallel,
thus drastically improving runtime and elevating the utility of our software to a diverse
group of practitioners with limited computational resources at their disposal.

Keywords: Bayesian inference, spatial modeling, geostatistics, predictive stacking, R.

1. Introduction

With the onset of the open-access era, there has been growing interest in the scientific com-
munity to study spatial and temporal variability in complex datasets. Rapid growth in
Geographical Information Systems (GIS) and Global Positioning Systems (GPS) in the last
few decades has led to government as well as private agencies to collect and store spatially
referenced data with regulatory, monitoring and resource management objectives. Recent
technological advances has empowered cheap and seamless integration of these systems into
a wide array of devices leading to collection of information at increasingly high spatial res-
olutions. The sources of these datasets are remarkably diverse, e.g., field measurements of
particulate matter for air quality assessments in public health research, computer models used
to simulate complex physical processes in earth sciences, species sightings in ecology, real es-
tate pricing and land valuation in economics etc. Thus, there has been a rise in demand
among researchers in various disciplines to analyze such point-referenced (latitude-longitude,

https://orcid.org/0009-0005-9889-7112
https://orcid.org/0000-0002-2239-208X

2 spStack: Bayesian Geostatistics Using Predictive Stacking in R

Easting-Northing, etc.) data to better understand different sources of variability in their
model of interest. Since rigorous statistical analysis equips the practitioner with scientific
evidence, based on which they take decisions with important economic, environmental, and
public health implications, it is crucial to estimate inferential uncertainty. In this aspect,
Bayesian hierarchical models have managed to procure extensive appeal due to its capability
of performing the non-trivial task of delivering fully model-based probabilistic quantification
of inferential uncertainty.

In order to address the challenges in analysis of spatial data, statistical modeling has seen
several significant developments; see, for example, the books by Cressie (1993), Moller and
Waagepetersen (2003), Wackernagel (2003), Banerjee, Carlin, and Gelfand (2014), Schaben-
berger and Gotway (2005), Diggle and Ribeiro (2007), Wikle and Cressie (2011), Chilès and
Delfiner (2012) for a variety of methods and applications. In the literature, it is widely
accepted that spatial dependence is effectively captured by hierarchical models which incor-
porate dependencies at multiple levels. Inference for such hierarchical models fall under the
Bayesian paradigm of statistical inference (see, e.g., Carlin and Louis 2008; Gelman, Car-
lin, Stern, Dunson, Vehtari, and Rubin 2013) where analysis is based on samples of model
parameters from their joint posterior distribution. Computational advances with regard to
Markov chain Monte Carlo (MCMC) algorithms have helped Bayesian hierarchical models
gain massive popularity in a diverse array of fields (see, e.g., Gilks, Richardson, and Spiegel-
halter 1995; Robert and Casella 2004) including spatial modeling (Banerjee et al. 2014). This
is largely owed to automated implementation of MCMC algorithms introduced by the BUGS
(Bayesian Inference Using Gibbs Sampling) project (Lunn, Spiegelhalter, Thomas, and Best
2009) through their Windows-only software WinBUGS which was succeeded by OpenBUGS
(Thomas, O’Hara, Ligges, and Sturtz 2006), and more recently, JAGS (Just Another Gibbs
Sampler) and NIMBLE (de Valpine, Turek, Paciorek, Anderson-Bergman, Temple Lang, and
Bodik 2017). These software packages offer user-friendly interface for constructing tailored
multilevel models and subsequently samples from the posterior distribution using Gibbs sam-
pler. The stage is also shared by Stan (Stan Development Team 2024), which uses Hamiltonian
Monte Carlo methods (Neal 2011) for sampling from the posterior distribution. These soft-
ware platforms interface with the popular R statistical environment (R Core Team 2024),
making them accessible to a wide community of users.

A salient feature of Bayesian hierarchical geostatistical models is the presence of a latent
spatial process that specifies the probability law of the point-referenced measurements of the
outcome at a finite set of locations. While the aforementioned software packages can be
used to build such models, their scope is rather limited. First, for a fully Bayesian model
with priors on the spatial process parameters, the MCMC algorithm is dominated by evalu-
ation of the posterior distribution, or if necessary, its gradient, requiring repeated expensive
matrix operations that are poorly implemented in these platforms. Second, the sampling
strategies pursued by the aforementioned software platforms are intended to explore a very
high-dimensional parameter space, since at every step, they update all model parameters that
includes the latent spatial process. Third, the spatial variance (partial sill), spatial decay,
spatial smoothness parameters and the nugget, if present, which we collectively refer to as
“process parameters”, are weakly identified (Zhang 2004). All these factors contribute to-
wards poor mixing of the chain, hence, delayed convergence, and, prolonged execution times;
thus, demonstrating how the aforementioned software packages are ill-suited for Bayesian geo-
statistical models. For example, the GeoBUGS module (Thomas, Best, Lunn, Arnold, and

Soumyakanti Pan, Sudipto Banerjee 3

Spiegelhalter 2014), that offers utilities for geostatistical modeling within WinBUGS, warns
users that their implementation of such models can be very slow even for moderately sized
datasets, and suggests to either use strong informative priors for the process parameters or
fix them a priori.

It is, therefore, not unreasonable to pursue methods that will yield robust inference for the
spatial process and deliver spatial predictions of the outcome at arbitrary points (“kriging”)
while circumventing inference on a few weakly identified parameters. Rather than devising
computational algorithms to achieve improved convergence, we develop a framework to con-
duct Bayesian inference for fixed effects and the latent spatial process by entirely avoiding
convergence issues for MCMC or other iterative algorithms for geostatistical data. Instead,
we build a hierarchical model that yields analytically accessible posterior distributions for the
fixed effects and the spatial random effects subject to fixing a few weakly identified process pa-
rameters and some hyperparameters so that we can draw exact posterior samples for any fixed
values of these parameters. For Gaussian data, this falls under the conjugate Bayesian linear
modeling framework. For non-Gaussian data, this is achieved by availing of recent results
developed in Bradley and Clinch (2024) on a new class of analytically accessible generalized
conjugate multivariate (GCM) distributions for spatial models by extending the Diaconis-
Ylvisaker family of conjugate priors for exponential families (Diaconis and Ylvisaker 1979).
Subsequently, we combine the inference by stacking the models on a grid of candidate values
the fixed parameters, supplied by the user. Stacking (Wolpert 1992; Breiman 1996; Clyde
and Iversen 2013) is a model averaging procedure that is widely used in machine learning
and has been shown (see, e.g., Le and Clarke 2017; Yao, Vehtari, Simpson, and Gelman 2018;
Yao, Vehtari, and Gelman 2022; Yao, Pirš, Vehtari, and Gelman 2021) to be an effective al-
ternative to traditional Bayesian model averaging (Madigan, Raftery, Volinsky, and Hoeting
1996; Hoeting, Madigan, Raftery, and Volinsky 1999).

However, fitting a Bayesian hierarchical spatial model requires specialized competencies in
probability theory and programming which may exceed the scope of scientific practitioners
in different disciplines, and hence, requires automation. The Geostatistics section of the
Analysis of Spatial Data (Bivand and Nowosad 2024) Comprehensive R Archive Network
(CRAN) Task View provides a substantive list of R packages that delivers Bayesian infer-
ence for point-referenced spatial data, among which, geoR (Ribeiro Jr, Diggle, Christensen,
Schlather, Bivand, and Ripley 2024), geoRglm (Christensen and Ribeiro 2002), spBayes (Fin-
ley, Banerjee, and Carlin 2007), ramps (Smith, Yan, and Cowles 2008), spTimer (Bakar and
Sahu 2015), INLA (Rue, Martino, and Chopin 2009) and FRK (Zammit-Mangion and Cressie
2021; Sainsbury-Dale, Zammit-Mangion, and Cressie 2024) are worth mentioning. These
packages either fits a fully Bayesian model using MCMC, or builds upon methodologies based
on discretized spatial domains and have limited support for non-Gaussian data, especially
since geoRglm is no longer being actively developed. We introduce the R package spStack
(Pan and Banerjee 2024) that delivers fast Bayesian inference, completely avoiding MCMC
algorithms, for Gaussian as well as non-Gaussian point-referenced spatial data, that includes
Poisson, binomial and binary data, using stacking of predictive densities. spStack, to the best
of our knowledge, is the first to implement Bayesian predictive stacking for analysis of spatial
data. The package is primarily written in C++ for speed, accompanied by calls to Fortran
routines offered by efficient linear algebra libraries for optimized matrix computations. With
the growing capacity of parallel computing, development of spStack enhances practicality of
Bayesian inference for geostatistical models over sequential algorithms like MCMC.

4 spStack: Bayesian Geostatistics Using Predictive Stacking in R

2. Bayesian spatial regression models
Consider a spatial process as an uncountable set of random variables, say {z(s) : s ∈ S}, over
a spatial region of interest S ∈ Rd, which is endowed with a probability law specifying the
joint distribution for any finite sample from that set. Let y(s) denote the outcome at s ∈ S
endowed with a probability law from the natural exponential family, which we denote by

y(s) ∼ EF(x(s)⊤β + z(s); b, ψy) (1)

for some positive parameter b > 0 and unit log partition function ψy (Section A.1). Various
forms of the unit log partition function ψ(·) and the scalar b denote different distributions
from the natural exponential family. For example, ψ1(t) = t2 with b = 1/2σ2 correspond to
Gaussian outcomes with variance σ2, ψ2(t) = et with b = 1 correspond to Poisson counts,
and ψ3(t) = log(1 + et) with b = 1 or b = m(s) > 1 correspond to binary outcomes or
binomial counts with m(s) number of trials. Fixed effects regression and spatial dependence
is introduced in the natural parameter, η(s) = x(s)⊤β + z(s) where x(s) is a p × 1 vector
of predictors referenced with respect to s, β is a p × 1 vector of slopes measuring the trend,
z(s) ∼ GP(0, σ2

zR(·, ·; θsp)) is a zero-centered spatial Gaussian process on S specified by
spatial variance parameter σ2

z and a spatial correlation function R(·, ·; θsp) with θsp consisting
of spatial decay (ϕ) and smoothness (ν) parameters. Currently, spStack supports only the
isotropic Matérn correlation function,

R(s, s′; θsp) = (ϕ|s− s′|)ν

2ν−1Γ(ν) Kν
(
ϕ|s− s′|

)
, (2)

where |s − s′| is the Euclidean distance between s and s′. The function Γ(·) denotes the
gamma function, and Kν is the modified Bessel function of the second kind of order ν which
may be fractional (Abramowitz and Stegun 1965, Chapter 10). We define a data D by the
triplet D = {y,X, χ} which collects the quantities that are known to a practitioner.

2.1. Conjugate Bayesian Gaussian spatial model

Let χ = {s1, . . . , sn} ∈ S be a set of n distinct spatial locations yielding measurements
y = (y(s1), . . . , y(sn))⊤ which are modeled as

y(si) = x(si)⊤β + z(si) + ϵ(si), ϵ(si) iid∼ N(0, σ2), (3)

with known values of predictors at these locations collected in a n × p full column rank
matrix X = [x(s1), . . . , x(sn)]⊤ and ϵ(si) for each i denotes independent and identically
distributed measurement errors. Let z = (z(s1), . . . , z(sn))⊤ denote the realization of the
spatial process over χ and R(χ; θsp) = (R(si, sj ; θsp))1≤i,j≤n be the n × n spatial correlation
matrix constructed from (2). For ease of notation, we drop χ and θsp from R(χ; θsp) and
simply write R for the spatial correlation matrix. Zhang, Tang, and Banerjee (2024) construct
a conjugate Bayesian hierarchical model

y | β, z, σ2
z ∼ N (Xβ + z, δ2σ2

zIn), z | σ2
z ∼ N (0, σ2

zR(χ; θsp)),
β | σ2

z ∼ N (µβ, σ
2
zVβ), σ2

z ∼ IG(aσ, bσ) ,
(4)

where we consider a fixed value of the noise-to-spatial variance ratio δ2 = σ2/σ2
z , the process

parameters in θsp, and the hyperparameters µβ, Vβ, aσ, bσ. We define a model M within the

Soumyakanti Pan, Sudipto Banerjee 5

family of hierarchical models (4) by specifying fixed values of θsp, δ2 and the hyperparameters.
From (4), we derive the posterior distribution of (γ, σ2

z), where γ = (β⊤, z⊤)⊤ as

p(γ, σ2
z | D,M) = p(σ2

z | D,M)× p(γ | σ2
z ,D,M)

= IG(σ2
z ; a∗, b∗)×N (γ; γ̂, σ2

zK∗),
(5)

where γ̂ = K∗X
⊤
∗ V

−1
∗ y∗, y∗ = (y⊤, µ⊤

β , 0⊤
n)⊤, a∗ = aσ +n/2, b∗ = bσ + 1

2(y∗−X∗γ̂)⊤V −1
∗ (y∗−

X∗γ̂), K−1
∗ = X⊤

∗ V
−1

∗ X∗, X∗ = [(X : In); Ip+n], and (2n+p)× (2n+p) block-diagonal matrix
V∗ = blkdiag(δ2In, Vβ, R). This representation of the posterior distribution follows from
the augmented linear system framework (see Banerjee 2020, Section 3.1). However, matrix
computation under this representation is suboptimal as it requires storage and handling of
unnecessarily large matrices and hence, we pursue a computationally efficient alternative.

Sampling from the posterior distribution

The posterior distribution (5) is further decomposed into

p(β, z, σ2
z | D,M) = p(σ2

z | D,M)× p(β | σ2
z ,D,M)× p(z | β, σ2

z , y,M)
= IG(σ2

z ; a∗, b∗)×N (β;Bb, σ2
zB)×N (z;Cc, σ2

zC),
(6)

where a∗ = aσ + n/2, b∗ = bσ + (y⊤V −1
y y + µ⊤

β V
−1

β µβ − b⊤Bb)/2, B−1 = X⊤V −1
y X + V −1

β ,
b = X⊤V −1

y y + V −1
β µβ, C−1 = R−1 + (1/δ2)In, c = (y −Xβ)/δ2 and Vy = R+ δ2In. Special

consideration is placed on computing C since the Cholesky decomposition chol(R) is deemed
numerically unstable under different correlation kernels, especially in presence of sampled
locations in close proximity. We avoid this by utilizing the identity

C =
(
R−1 + (1/δ2)In

)−1
= δ2(R+ δ2In)−1R = δ2V −1

y R.

This representation is particularly useful since it helps express all parameters involved in the
posterior in terms of Vy. Equation 6 facilitates an efficient composition sampling strategy to
obtain exact posterior samples. To elucidate further, first we sample σ2(ℓ)

z for ℓ = 1, . . . , Ns

from p(σ2
z | D). For each ℓ, we sample β(ℓ) from p(β | σ2(ℓ)

z ,D), and, finally, draw z(ℓ)

from p(z | β(ℓ), σ
2(ℓ)
z ,D). The last step requires computing a triangular solve of a n × n

matrix to obtain C and, subsequently find its Cholesky factor. Hence, the computation
required to sample from (5) is dominated by two Cholesky decompositions Ly ← chol(Vy)
and chol(C), and, two triangular solves trsolve(L⊤

y , trsolve(Ly, R)), where trsolve(A, B)
refers to solving the triangular system AX = B for matrices X and B, and triangular matrix
A. Thus, it requires O(2n3/3+n3) i.e., O(5n3/3) floating point operations (flops) and O(2n2)
storage. This is implemented in the spLMexact() function offered by spStack.
We demonstrate spLMexact() on the synthetic dataset simGaussian available in spStack.

R> library("spStack")
R> data(simGaussian)

The dataset is simulated from the model (3) using the sim_spData() function with family
= "gaussian", n = 500 locations sampled uniformly on an unit square, number of predictors
including intercept p = 2, fixed effects β = (2, 5)⊤, spatial effects drawn from a Gaussian

6 spStack: Bayesian Geostatistics Using Predictive Stacking in R

process under the Matérn correlation kernel with ϕ = 2, ν = 0.5, σ2
z = σ2 = 0.4 which implies

δ2 = 1. Code to reproduce all synthetic data is available in the package manual. If not using
the default priors, it can be set up using the following code.

R> muBeta <- c(0, 0)
R> VBeta <- diag(1E3, 2)
R> sigmaSqIGa <- 2
R> sigmaSqIGb <- 2
R> prior_list <- list(beta.norm = list(muBeta, VBeta),
+ sigma.sq.ig = c(sigmaSqIGa, sigmaSqIGb))

The code below runs the analysis under the fixed values ϕ = 3, ν = 0.75 and δ2 = 0.8.

R> set.seed(1729)
R> mod1 <- spLMexact(y ~ x1, data = simGaussian,
R> coords = as.matrix(simGaussian[, c("s1", "s2")]),
R> cor.fn = "matern",
R> priors = prior_list,
R> spParams = list(phi = 3, nu = 0.75),
R> noise_sp_ratio = 0.8,
R> n.samples = 1000, verbose = FALSE)

--
Model description

--
Model fit with 500 observations.

Number of covariates 2 (including intercept).

Using the matern spatial correlation function.

Priors:
beta: Gaussian
mu: 0.00 0.00
cov:
1000.00 0.00
0.00 1000.00

sigma.sq: Inverse-Gamma
shape = 2.00, scale = 2.00.

Spatial process parameters:
phi = 3.00, and, nu = 0.75.

Noise-to-spatial variance ratio = 0.80.

Number of posterior samples = 1000.
--

Soumyakanti Pan, Sudipto Banerjee 7

The following code summarizes the 95% credible intervals of the fixed effects.

R> beta.post <- mod1$samples$beta
R> rownames(beta.post) <- mod1[["X.names"]]
R> print(t(apply(beta.post, 1,
+ function(x) quantile(x, c(0.025, 0.5, 0.975)))))

2.5% 50% 97.5%
(Intercept) 1.343554 2.072259 2.753898
x1 4.949188 5.002247 5.058618

We observe that the posterior of the intercept and the slope for the variable x1 has con-
centrated around its true value 2 and 5, respectively. Running help("spLMexact") reveals
its documentation. The Examples section of the documentation provides additional code to
visualize and compare the interpolated spatial surfaces of the true spatial random effects with
which the data was simulated and the posterior median of the spatial effects.

Spatial prediction

Let χ̃ = {s̃1, . . . , s̃ñ} ∈ S \χ be a collection of ñ new locations in S, where we wish to predict
the latent spatial process as well as the response. Let z̃ and ỹ be the ñ × 1 vectors with
ith elements z(s̃i) and ỹ(si) denoting the spatial effect and the response at location s̃i. Let
ñ × p full column rank matrix X̃ = [x(s̃1), . . . , x(s̃ñ)]⊤ collects the known predictors at the
new locations χ̃, and ñ × ñ matrix R̃ = R(χ̃; θsp) is the correlation matrix corresponding to
χ̃ and n × ñ matrix J = R(χ, χ̃; θsp) denote the cross-covariance matrix between the sets of
locations χ and χ̃. Spatial predictive inference follows from the posterior distribution

p(ỹ, z̃ | D,M) =
∫
p(ỹ | z̃, β, σ2

z ,M) p(z̃ | z, σ2
z ,M) p(β, z, σ2

z | D,M) dβ dz dσ2
z , (7)

which is a multivariate t distribution with location µ̃ and scale matrix (b∗/a∗)Ṽ , where
2ñ × 1 vector µ̃ = Wγ̂, 2ñ × 2ñ matrix Ṽ = WK∗W

⊤ + K̃ with 2ñ × (n + p) matrix
W = [(X̃ : J⊤R−1); (0 : J⊤R−1)], 2ñ × 2ñ matrix K̃−1 = [(R−1

z̃|z + 1
δ2 Iñ : − 1

δ2 Iñ); (− 1
δ2 Iñ :

1
δ2 Iñ)], and ñ × ñ matrix Rz̃|z = R̃ − J⊤R−1J (see, Zhang et al. 2024). These closed form
expressions of the posterior predictive densities are particularly useful when predictive infer-
ence is sought without fitting the model. However, if posterior samples {β(ℓ), z(ℓ), σ

2(ℓ)
z ; ℓ =

1, . . . , Ns} are available, predictive inference for z̃ and ỹ may proceed by drawing z̃(ℓ) from
p(z̃ | z(ℓ), σ

2(ℓ)
z ,M) which is essentially N (J⊤R−1z(ℓ), σ

2(ℓ)
z Rz̃|z), and subsequently, drawing

ỹ(ℓ) from p(ỹ | z̃(ℓ), β(ℓ), σ
2(ℓ)
z ,M) that is N (X̃β(ℓ) + z̃(ℓ), δ2σ

2(ℓ)
z Iñ) respectively, for each

ℓ. Prediction of the latent spatial process requires additional one Cholesky decomposition
chol(R), and two triangular solves trsolve(chol(R), z(ℓ)) and trsolve(chol(R), J).

2.2. Conjugate Bayesian non-Gaussian spatial model

Given a fixed set of n locations χ = {s1, . . . , sn} in S, let y = (y(s1), . . . , y(sn))⊤ ∈ Y n is the
vector of observed outcomes, where Y denotes the support of the outcome variable. Following

8 spStack: Bayesian Geostatistics Using Predictive Stacking in R

Bradley and Clinch (2024), we introduce a conjugate Bayesian hierarchical spatial model as

y(si) | β, z(si), ξi, µi
ind.∼ EF

(
x(si)⊤β + z(si) + ξi − µi; b(si), ψy

)
, i = 1, . . . , n

z | σ2
z ∼ N (0, σ2

zR(χ; θsp)), β | σ2
β ∼ N (0, σ2

βVβ),
ξ | β, z, µ, σξ ∼ GCMc(µ̃ξ, Hξ, αξ, κξ;ψξ),

σ2
β ∼ IG(νβ/2, νβ/2), σ2

z ∼ IG(νz/2, νz/2) ,

(8)

where x(si) is a p× 1 vector of predictors, β is the corresponding p× 1 vector of fixed effects,
z = (z(s1), . . . , z(sn))⊤ is n × 1 with each z(si) being a realization of the spatial process
with under correlation kernel (2) at location si, ψy is either ψ2 or ψ3, denoting Poisson or
binary/binomial data, and b = (b(s1), . . . , b(sn))⊤ is known. The conditional prior for ξ is
a GCMc distribution (see, Section A.2) with the 2n × n matrix Hξ = [In;σξIn], location
parameter µ̃ξ = Hξ((µ−Xβ − z)⊤, µ⊤

ξ)⊤, where µ = (µ1, . . . , µn)⊤ is n× 1, shape and scale
parameters αξ = (αϵ1⊤

n , 0⊤
n)⊤ and κξ = (κϵ1⊤

n , (1/2)1⊤
n)⊤, respectively, for some fixed positive

reals αϵ and κϵ. The unit log partition function ψξ is defined as ψξ(h) = (ψy(h1)⊤, ψ1(h2)⊤)⊤

for any h = (h1, h2) with h1, h2 ∈ Rn, where ψy(·) and ψ1(·) operate element-wise on their
respective arguments. Gather the fixed and random effects into the (2n + p) × 1 parameter
γ = (ξ⊤, β⊤, z⊤)⊤. Let µ̃ = (µ⊤, µ⊤

γ)⊤ be the (3n+p)×1 vector obtained by combining µ with
the location parameters µγ = (µ⊤

ξ , 0⊤
n+p)⊤, where 0m denotes a m × 1 zero vector. Let q =

−Q⊤µ̃, where Q is (3n+p)×n and obtained from the decomposition QQ⊤ = I3n+p−PH with
the columns of Q being the n unit norm orthogonal eigenvectors of I3n+p−PH corresponding
to eigenvalue 1, where PH = H(H⊤H)H⊤. Hence, Q⊤Q = In and H⊤Q = 0. Furthermore,
H = [(In : X : In);L−1] is (3n + p) × (2n + p), X is n × p with x(si)⊤ as its i-th row, and
(2n+p)×(2n+p) matrix L = blkdiag(σξIn, Lβ, Lz), where Lβ = chol(Vβ) and Lz = chol(R)
are lower-triangular Cholesky factors of Vβ and R = R(χ; θsp). We define a model M within
the family of hierarchical models (8) by specifying fixed values of θsp, the boundary adjustment
parameters αϵ and κϵ, and the hyperparameters Vβ, νβ, νz and σξ.
We work with an improper prior on q given by p(q) ∝ 1 which follows from assuming a vague
prior on µ (see, Proposition A1 and Lemma A1 in Pan, Zhang, Bradley, and Banerjee 2024,
for technical details). These specifications yield the posterior distribution

p
(
(γ⊤, q⊤)⊤ | D,M

)
∝ GCM

(
(γ⊤, q⊤)⊤; 03n+p, V∗, α∗, κ∗;ψ∗

)
, (9)

where V −1
∗ = [H : Q], and the shape and scale parameters are α∗ = ((y + αϵ1n)⊤, 0⊤

2n+p)⊤

and κ∗ = ((b + κϵ1n)⊤, (1/2)1⊤
n , (1/2)(νβ + 1)1⊤

p , (1/2)(νz + 1)1⊤
n)⊤. The unit log parti-

tion function ψ∗ in (9) is ψ∗(h) = (ψy(h1)⊤, ψ1(h2)⊤, ψ4(h3; νβ)⊤, ψ4(h4; νz)⊤)⊤ for some
h = (h⊤

1 , h
⊤
2 , h

⊤
3 , h

⊤
4)⊤ with h1, h2, h4 ∈ Rn, h3 ∈ Rp, where the log partition functions op-

erate element-wise on the arguments (see Theorem A1 in Pan et al. 2024). The function
ψ4(·; ·) corresponds to the log partition function of the Student’s t distribution family (see
Section A.1) and appears in (9) as a result of integrating out σ2

β and σ2
z to obtain marginal

priors p(β) and p(z). Generalized linear models typically assume that q is zero, which yields
the posterior distribution p(γ | D,M) ∝ GCMc(γ; µ̃,H, α∗, κ∗;ψ∗), from which we cannot
sample directly (see Section A.2) except for some special cases of ψy (e.g., Gaussian). Finally,
we remark that µ is crucial in producing the posterior distribution within the GCM family
and, hence, unlike in traditional generalized linear models, cannot be excluded from (8).

Soumyakanti Pan, Sudipto Banerjee 9

Sampling from the posterior distribution

To obtain samples of γ = (ξ⊤, β⊤, z⊤)⊤ from their posterior distribution (9), we first draw
v(ℓ) ∼ GCM(03n+p, I3n+p, α∗, κ∗;ψ∗) which is equivalent to sampling independent DY random
variables, for each ℓ. To elaborate further, v(ℓ) = (v(ℓ)⊤

η , v
(ℓ)⊤
ξ , v

(ℓ)⊤
β , v

(ℓ)⊤
z)⊤ is made up of

n×1 vector v(ℓ)
η = (v(ℓ)

η,1, . . . , v
(ℓ)
η,1)⊤ which is a draw from the posterior distribution of the n×1

natural parameter η = Xβ + z + ξ − µ, with i-th element v(ℓ)
η,i ∼ DY(yi + αϵ, b(si) + κi;ψy)

for each i. For example, in case of Poisson data, the DY random variable v(ℓ)
η,i corresponds to

independent log-gamma draws for each i (see, Bradley, Holan, and Wikle 2020). Moreover,
v

(ℓ)
ξ is n×1 and made up of independent draws from N (0, σ2

ξ), p×1 vector v(ℓ)
β and n×1 vector

v
(ℓ)
z are made up of independent draws from Student’s t distribution with degrees of freedom
νβ and νz respectively. Subsequently, since [H : Q]−1 = [H(H⊤H)−1 : Q]⊤, we compute

γ(ℓ) ← (H⊤H)−1H⊤v(ℓ), q(ℓ) ← Q⊤v(ℓ) , (10)

to obtain samples (γ(ℓ)⊤, q(ℓ)⊤)⊤ from (9). The projection expression in (10) for obtaining
replicates γ(ℓ) merits special attention due to its similarity with the posterior distribution of
the fixed effects and the latent process in (5) under the augmented linear model framework.
We develop an efficient algorithm for evaluation of (H⊤H)−1H⊤v(ℓ) for each ℓ, which proceeds
by a priming step and, subsequently, a projection step -

• In the priming step, we exploit the structured nature of the matrix H and use block-
matrix inversion strategies to compute certain matrices that are related to different
components of (H⊤H)−1, thus avoiding explicit inversion.

• In the projection step, we repetitively use the matrices obtained from the priming step
to evaluate (10) and obtain γ(ℓ) for each v(ℓ) using a for loop over ℓ.

Note that, the priming step is expensive as it requires O(n3) flops, and, hence, we design
the sampling algorithm in a way such that the priming step needs to be evaluated only
once and its output can be utilized for subsequent posterior sampling. This is implemented
in the spGLMexact() function offered by spStack. We would also like to emphasize that
spGLMexact() is the first to implement exact sampling strategy for spatial non-Gaussian
data using the generalized conjugate multivariate framework (Bradley and Clinch 2024).
We demonstrate spGLMexact() on the synthetic spatial count dataset simPoisson available
in spStack. simPoisson is simulated from the model (1) using the sim_spData() function
with family = "poisson", n = 500 locations sampled uniformly on an unit square, p = 2,
fixed effects β = (2,−0.5)⊤, spatial effects drawn from a Gaussian process under the Matérn
correlation kernel with ϕ = 5, ν = 0.5, and spatial variance σ2

z = 0.4. The following code runs
the analysis by drawing 1000 samples from (9) conditional on ϕ = 4, ν = 0.4 and αϵ = 0.5.

R> data(simPoisson)
R> mod2 <- spGLMexact(y ~ x1, data = simPoisson, family = "poisson",
+ coords = as.matrix(simPoisson[, c("s1", "s2")]),
+ cor.fn = "matern", spParams = list(phi = 4, nu = 0.4),
+ boundary = 0.5, n.samples = 1000, verbose = TRUE)

10 spStack: Bayesian Geostatistics Using Predictive Stacking in R

--
Model description

--
Model fit with 500 observations.

Family = poisson.

Number of covariates 2 (including intercept).

Using the matern spatial correlation function.

Priors:
beta: Gaussian
mu: 0.00 0.00
cov:
100.00 0.00
0.00 100.00

sigmaSq.beta ~ IG(nu.beta/2, nu.beta/2)
sigmaSq.z ~ IG(nu.z/2, nu.z/2)
nu.beta = 2.10, nu.z = 2.10.
sigmaSq.xi = 0.10.
Boundary adjustment parameter = 0.50.

Spatial process parameters:
phi = 4.00, and, nu = 0.40.

Number of posterior samples = 1000.
--

The following code summarizes the 95% credible intervals of the fixed effects. We note that
the posterior medians of the intercept and the slope of the variable x1 is sitting around their
corresponding true values.

R> beta.post <- mod2$samples$beta
R> rownames(beta.post) <- mod1[["X.names"]]
R> print(t(apply(beta.post, 1,
+ function(x) quantile(x, c(0.025, 0.5, 0.975)))))

2.5% 50% 97.5%
(Intercept) 0.5966932 2.0912370 3.6759803
x1 -0.5872058 -0.5079498 -0.4137453

We note that GCM customarily uses posterior samples of β and z to draw samples from the
posterior predictive distribution p(x(s)⊤β + z(s) + ξ − µ | D,M) for any s ∈ χ by simply
considering x(s)⊤β(ℓ) + z(ℓ)(s), where {β(ℓ), z(ℓ)(s)} are replicates from (9), which implicitly
estimates ξ and µ to be zero after integrating them out from (9) (Bradley and Clinch 2024).

Soumyakanti Pan, Sudipto Banerjee 11

Spatial prediction
Given data observed at χ, let χ̃ = {s̃1, . . . , s̃ñ} ⊂ S \ χ be a collection of ñ new locations in
S, where we wish to predict the response and the latent spatial processes. Let ỹ and z̃ be
the ñ× 1 vectors with ith elements y(s̃i) and z(s̃i) respectively. For a given model M , which
entails a fixed value of θsp and some auxiliary model parameters, spatial predictive inference
evaluates the posterior predictive distribution,

p(ỹ, z̃ | D,M) =
∫
p(ỹ | β, z̃,D) p(z̃ | z,M) p(β, z | D,M)dβdz . (11)

Unlike the Gaussian case, (11) is not analytically tractable and hence, sampling from (11) is
facilitated by first drawing {β(ℓ), z(ℓ)} from p(β, z | D,M) as described in Section 2.2.1 and
then, for each drawn value z(ℓ), z̃(ℓ) is drawn from p(z̃ | z,M). Further, for each posterior
sample β(ℓ) and z̃(ℓ), we draw ỹ(ℓ) from p(ỹ | β, z̃,D) with µ and ξ in (8) set to 0. This yields
samples {ỹ(ℓ), z̃(ℓ)} from (11). Under (8), the marginal distribution of the (n+ ñ)× 1 vector
(z⊤, z̃⊤)⊤ is a multivariate t-distribution tνz (0n, Ṽz) with νz degrees of freedom, location
parameter 0n+ñ and (n+ ñ)× (n+ ñ) scale matrix Ṽz = [(R : J); (J⊤ : R̃)], with symbols as
defined previously in Section 2.1.2. This yields

z̃ | z,M ∼ tn+νz

(
J⊤R−1z,

z⊤R−1z + νz

n+ νz
(R̃− J⊤R−1J)

)
. (12)

It is worth noticing that, the scale matrix contains the factor (z⊤R−1z + νz)/(n+ νz) which
is directly related to the Mahalanobis distance of z implying that the dispersion is enlarged
in presence of extreme values of z. The degrees of freedom also increases by a factor n which
means that, the more data we have, the less heavy-tailed p(z̃ | z,M) becomes (Ding 2016).

3. Predictive stacking
Following the generalized Bayesian stacking framework in Yao et al. (2018), we devise a
stacking algorithm for geostatistical analysis, which we refer to as predictive stacking. Let
M = {M1, . . . ,MG} be a collection of G candidate models, where each Mg corresponds to a
model with fixed values of certain parameters, as defined in Sections 2.1 and 2.2 for Gaus-
sian and non-Gaussian settings, respectively. Traditional Bayesian model averaging (BMA)
asymptotically chooses a single model inM that is closest in terms of Kullback-Leibler (KL)
divergence to the true data generating model M0, and hence, is flawed under theM-open set-
ting where M does not contain M0 (Bernardo and Smith 1994). Yao et al. (2018) effectively
mitigates this issue by generalizing stacking to combine Bayesian predictive distributions.
Given the complex nature of spatial dependence in (1), the assumption that M contains the
true model M0 is rarely tenable in practical geostatistics and we prefer stacking to BMA.
Using predictive stacking for Bayesian inference of Gaussian and non-Gaussian data are im-
plemented in the functions spLMstack() and spGLMstack() respectively. Detailed example
code for implementing these core functions are discussed in Section 5.

3.1. Stacking algorithm

The stacking algorithm finds a p̃ in C = {∑G
g=1wg p(· | D,Mg) : ∑G

g=1wg = 1, wg ≥ 0, ∀g},
such that, its KL-divergence to pt(·,D), the true data generating model, is minimized. We

12 spStack: Bayesian Geostatistics Using Predictive Stacking in R

define the stacking weights w as the solution to the optimization problem

max
w1,...,wG

1
n

n∑
i=1

log
G∑

g=1
wgp(y(si) | D−i,Mg) s.t. wg ≥ 0,

G∑
g=1

wg = 1 , (13)

where D−i = {y−i, X−i, χ−i} denotes the data excluding the i-th observation, for i = 1, . . . , n.
The (n − 1) × 1 vector y−i collects the outcomes except the i-th, (n − 1) × p matrix X−i

denote the matrix of predictors X with the i-th row deleted, and χ−i = χ \ {si}. This
follows from the result that minimizing KL (p̃(· | D), pt(· | D)) under the constraint p̃ ∈ C
is asymptotically equivalent to the optimization problem in (13) (see, Le and Clarke 2017;
Clyde and Iversen 2013). The optimization task in (13) falls within the class of convex
programming and can be implemented using suitable modeling tools and solvers. While
the stacking_weights() function from the loo (Vehtari, Gabry, Magnusson, Yao, Bürkner,
Paananen, and Gelman 2024a) package offers this utility, the returned weights have often
been found to be suboptimal, thus impacting its reliability. To address these limitations, we
propose the function get_stacking_weights(), which has the arguments

• log_loopd: an n×G matrix of leave-one-out predictive densities in log scale, where n
is the sample size and, G is the number of candidate models.

• solver: a quoted keyword specifying the solver to use, e.g., "ECOS".

While stacking_weights() from loo uses general purpose optimization tools provided by
optim() of the stats package, get_stacking_weights() in spStack uses the CVXR package,
which brings the functionalities of the popular convex optimization software CVX in R. It
proceeds by first verifying the convexity of the problem using disciplined convex programming
(DCP) before passing it to a solver (Fu, Narasimhan, and Boyd 2020). The solver argument
of get_stacking_weights() allows the user to interface with different solvers of their choice,
even beyond the available solvers in CVXR. For example, the user can use the following
example code to use the commercial solver Mosek for finding optimal stacking weights. The
code assumes that a n×G matrix containing log leave-one-out predictive densities for all G
candidate models is stored in the variable loopd_mat.

library("Rmosek")
w_hat <- get_stacking_weights(loopd_mat, solver = "MOSEK")

The returned object w_hat is a named list with weights containing a G×1 numeric vector of
the optimal stacking weights, and status containing a character specifying the solver status,
e.g., "optimal" implies a successful search. It must be noted that, using Mosek software
requires a license and installation of the package Rmosek (ApS 2024) to interface from R.

3.2. Leave-one-out predictive densities

It is clear that, a critical step in solving for the stacking weights is the evaluation of the leave-
one-out predictive densities p(y(si) | D−i,Mg) for each i = 1, . . . , n and g = 1, . . . , G. This
step is non-trivial from a computational viewpoint, since, a naive approach would require
either repeated Cholesky decompositions or refitting the model n times for each g. Note
that, the computation required to sample from the respective posterior distributions under

Soumyakanti Pan, Sudipto Banerjee 13

the Gaussian and the non-Gaussian settings, is dominated by Cholesky factorizations of n×n
matrices related to the spatial correlation matrix R, which requires O(n3/3) flops. The naive
approach for finding leave-one-out predictive densities (LOO-PD) entails O(n4) flops which
is an impractical computational cost even for moderately large datasets. Hence, we devise
computationally efficient strategies to find the LOO-PD for all G candidate models.
We pursue strategies like row-deletion updates of a Cholesky factor (Tae Yoon Kim and Cox
2002), which computes the factor chol(A−I) from chol(A), where A is a n × n positive-
definite matrix, I is a subset of {1, . . . , n} of size m ≥ 1 comprising of m consecutive indices,
and, A−I denotes the (n −m) × (n −m) submatrix of A put together by excluding the row
and columns with indices in I. Such updates can be reformulated as m rank-one updates of a
submatrix of the factor chol(A) and can be done in O(m(n− Imax)2), where Imax = max(I).
For ease of notation, we use the functions cholDelUpdate() and cholBlockDelUpdate() to
denote these utilities for the cases m = 1 and 1 < m < n − 1, respectively. More details on
these algorithms are in Section 4.

Exact leave-one-out predictive densities

For a fixed model Mg, under the Gaussian setting (4), the LOO-PD for each i, is

p(y(si) | D−i,Mg) = t2a∗,i

(
y(si); J⊤

i V
−1

y−i
y−i +A⊤

i Bibi,
b∗,i

a∗,i
(Vyi|y−i

+A⊤
i BiAi)

)
, (14)

where Ji = R[-i, i] is the cross-correlation matrix between {si} and χ−i, (n− 1)× (n− 1)
matrix Vy−i = Vy[-i, -i] is the marginal correlation matrix of y−i, Bi = X⊤

−iV
−1

y−i
X−i +

V −1
β , bi = X⊤

−iV
−1

y−i
y−i + V −1

β µβ, p × 1 vector Ai = Xi − X⊤
−iV

−1
y−i
Ji with X⊤

i = X[i,],
scalar Vyi|y−i

= Vyi − J⊤
i V

−1
y−i
Ji with Vyi = Vy[i, i], a∗,i = aσ + (n − 1)/2, b∗,i = bσ +

(y⊤
−iV

−1
y−i
y−i + µ⊤

β V
−1

β µβ − b⊤
i Bibi)/2 and, tρ(x;m, v2) denotes the t-density with degrees of

freedom ρ, location and scale parameters m and v respectively, evaluated at x. Note that,
the computation surrounding (14) surrounds the Cholesky factor Ly−i = chol(Vy−i), and
subsequent triangular solves to obtain L−1

y−i
y−i, L−1

y−i
X−i and, L−1

y−i
Ji. Given that, we have

already obtained Ly, the Cholesky factor of Vy while sampling from p(θ | D,Mg), it is not
necessary to evaluate chol(Vy−i) again for each i = 1, . . . , n. Instead, we do

for i = 1, . . . , n do
Ly−i ← cholDelUpdate(Ly, i) ▷ O((n− i)2) flops
L−1

y−i
y−i ← trsolve(Ly−i , y−i) ▷ O(n2) flops

L−1
y−i
X−i ← trsolve(Ly−i , X−i) ▷ O(pn2) flops

L−1
y−i
Ji ← trsolve(Ly−i , Ji) ▷ O(n2) flops

Compute p(y(si) | D−i,M) using the closed form expression in (14)
end for

where cholDelUpdate(Ly, i) refers to updating the Cholesky factor Ly after deleting the i-
th row and column from Vy. This accumulates to a computational complexity of O(n3),
a substantial improvement over the naive approach that requires O(n4) flops. Calculation
of exact LOO-PD under a fixed model Mg within (4) can be accessed in the spLMexact()
function by setting the optional arguments loopd = TRUE and loopd.method = "exact".
Under the non-Gaussian setting (8), for a fixed model Mg, evaluation of LOO-PD is excep-
tionally challenging, since, unlike the Gaussian case, they do not have closed form expressions.

14 spStack: Bayesian Geostatistics Using Predictive Stacking in R

Instead, we use draws {β(ℓ)
g,i , z

(ℓ)
g,i}

Nmc
ℓ=1 from p(θ | D−i,Mg) in (9), to evaluate

p(y(si) | D−i,Mg) = 1
Nmc

Nmc∑
ℓ=1

EF
(
y(si); x(si)⊤β

(ℓ)
g,i + z

(ℓ)
g,i (si); b(si), ψy

)
, (15)

whereNmc is for the number of Monte Carlo simulations for evaluating (15), and, EF(x; η; b, ψ)
corresponds to the exponential family density with log partition function ψ, evaluated as x (see
Appendix A for details). While it is possible to proceed by applying cholDelUpdate() to ob-
tain row-deleted Cholesky factors, computation of the priming step (see Section 2.2.1), that is
required to set up matrices for the projection (10) is of order O(n3) and hence, offsets the com-
putational efficiency gained by cholDelUpdate(). This utility is offered in the spGLMexact()
function invoked with arguments loopd = TRUE and loopd.method = "exact".

K-fold cross validation

Following Vehtari, Gelman, and Gabry (2017), a more practical approach for evaluation LOO-
PD is to cross-validate using K ≪ n hold-out partitions of D. Without loss of generality,
we partition the indices {1, . . . , n} into K blocks such that each block consists of consecutive
indices Ik of size nk, k = 1, . . . ,K. Let D[k] = (y[k], X[k], χ[k]) be the subset of D corresponding
to the indices in Ik, and D[−k] = (y[−k], X[−k], χ[−k]) is its complement i.e., D \ D[k] of size
(n−nk), for each k. Under the Gaussian setting, such strategies can be applied to approximate
p(y(si) | D−i,Mg) by p(y(si) | D−[k],Mg) which replaces Ly−i ← cholDelUpdate(Ly, i) by,

Ly−[k] ← cholBlockDelUpdate(Ly, Ik) ,

where cholBlockDelUpdate(Ly, Ik) corresponds to the block-deletion update of the Cholesky
factor Ly after removing the rows and columns pertaining to Ik from Vy. However, this does
not add any computational advantage over the exact leave-one-out strategy since each of
the K block-deletion updates would require nk rank-one updates for k = 1, . . . ,K, which
accumulates to a similar flop count as n single row-deletion updates.
On the other hand, under the non-Gaussian setting, due to the intractability of the LOO-PD,
K-fold cross-validation can be very useful. For each k, we fit Mg to D−[k] and draw NMC

samples {β(ℓ)
g,k, z

(ℓ)
g,k}

Nmc
ℓ=1 from p((γ⊤, q⊤)⊤ | D−[k],Mg) as given in (9), to evaluate

p(y(si) | D−i,Mg) ≈ 1
Nmc

Nmc∑
ℓ=1

EF
(
y(si); x(si)⊤β

(ℓ)
g,k + z

(ℓ)
g,k(si); b(si), ψy

)
, ∀si ∈ χ[k] , (16)

for locations pertaining to partition D[k]. This brings down the computational complexity to
O(Kn3) flops. A typical value in the literature is K = 10 (see Vehtari et al. 2017, Section 2.3).
For example, under a fixed model in the non-Gaussian setting , evaluation of LOO-PD using
10-fold cross-validation can be accessed within the spGLMexact() function by running it with
the arguments loopd = TRUE, loopd.method = "CV" and CV.K = 10.

Pareto-smoothed importance sampling

Importance weighting has also been an attractive option to approximate leave-one-out pre-
dictive densities when the evaluation involves Monte Carlo integration (see Gelfand, Dey,

Soumyakanti Pan, Sudipto Banerjee 15

and Chang 1992; Vehtari, Simpson, Gelman, Yao, and Gabry 2024b) as seen in Equa-
tions 15 and 16. Note that, under any model Mg, Gaussian or non-Gaussian, based on
draws {β(ℓ)

g , z
(ℓ)
g }Nmc

ℓ=1 from the full posterior p(θ | D,Mg), we can approximate LOO-PD as

p(y(si) | D−i,Mg) ≈ 1∑Nmc
ℓ=1 w

ℓ
i,g

Nmc∑
ℓ=1

wℓ
i,g EF

(
y(si); x(si)⊤β(ℓ)

g + z(ℓ)
g (si); b(si), ψy

)
, (17)

where wℓ
i,g is the importance ratio with 1/wℓ

i,g = EF(y(si); x(si)⊤β
(ℓ)
g +z(ℓ)

g (si); b(si), ψy). The
weights wℓ

i,g tend to have high or infinite variance thus introducing instability in computing
(17). To address this issues, Vehtari et al. (2017) proposes stabilizing the weights by fitting
a generalized Pareto distribution to the tail of the weight distribution using the empirical
Bayes estimation algorithm proposed in Zhang and Stephens (2009). Thus, no model fitting
is necessary for calculating leave-one-out predictive densities. The computational cost of this
approach is O(n logn) and hence very fast. We follow the R package loo for developing this
functionality for or package. Currently, we implement this approach only for the Gaussian
model, and can be accessed by setting the arguments loopd = TRUE and loopd.method =
"PSIS" in the function spLMexact().

4. Computational workflow
The algorithms for exact sampling from the posterior distributions and calculation leave-one-
out predictive densities, as presented in the previous sections, are implemented in spStack
functions. The backend of the package is implemented in C++ and harnesses R’s Foreign
Language Interface to call Fortran routines for optimized matrix computations. To be spe-
cific, we leverage the F77_NAME macro to interface with legacy Fortran functions offered by
highly efficient linear algebra libraries like BLAS (Basic Linear Algebra Subprograms, Law-
son, Hanson, Kincaid, and Krogh 1979) and LAPACK (Linear Algebra Package, Anderson,
Bai, Bischof, Blackford, Demmel, Dongarra, Croz, Greenbaum, Hammarling, McKenney, and
Sorensen 1999). The algorithms for exact posterior sampling and calculation of leave-one-out
predictive densities, as presented in Sections 2 and 3, require expensive matrix operations
and hence we place substantial effort on formulating algorithms in order to optimize floating
point operations and allocations of dynamic memory. We organize our contribution towards
enhancing computational efficiency into the following —

• Using suitable routines that are already existing in efficient linear algebra libraries like
BLAS and LAPACK. In particular, we use level 2 BLAS routines like dtrsv for solving
triangular systems Ax = b where both x, b are vectors and A is a triangular matrix,
dgemv for matrix-vector multiplication, ddot for computing dot product, and level 3
BLAS routines like dtrsm for solving AX = b where both X, B are matrices and A is a
triangular matrix, dgemm for matrix-matrix multiplication, etc. We also use the dpotrf
routine from LAPACK, referred to as chol() in the previous sections, for computing
Cholesky factors of dense matrices. trsolve() is used to refer to either trsv or trsm.

• Developing new routines that are not readily available within popular matrix algebra
libraries, to execute our proposed algorithms. These include C++ functions for the
utilities cholDelUpdate(), cholBlockDelUpdate() and cholRankOneUpdate(). The

16 spStack: Bayesian Geostatistics Using Predictive Stacking in R

L
(k)
1

L
(k)
2

ℓ⊤
k1

ℓk2

L
(k)
1

L̃k
Lk

Lk
ℓk2

L̃k
L

(k)
2

Rank-1 update

Figure 1: A schematic diagram summarizing the row-deletion update of a Cholesky factor

first two functions are defined in Section 3.2, and, cholRankOneUpdate() corresponds
to the rank-1 update of a Cholesky factor. Details are discussed below.

The cholDelUpdate(L, k) refers to finding the Cholesky factor of the (n−1)× (n−1) matrix
A−k which is formed my deleting the k-th row and column from the n × n matrix A for
some 1 < k < n, where L and L̃ denote the lower-triangular Cholesky factors of A and A−k,
respectively. Note that, the k-th row of L partitions the factor L into five components, the top
left (k−1)× (k−1) lower-triangular submatrix L(k)

1 , the non-zero k×1 submatrix of the k-th
row ℓ⊤k1, the lower left (n− k)× (k− 1) submatrix L(k)

2 , the non-zero (n− k)× 1 submatrix of
k-th column ℓk2, and, the bottom right (n−k)×(n−k) lower-triangular submatrix Lk. See the
left diagram of Figure 1 for reference. Similarly, for L̃, let L̃(k)

1 be the top left (k−1)× (k−1)
submatrix, L̃(k)

2 be the lower left (n − k) × (k − 1) submatrix and L̃k be the lower right
(n− k)× (n− k) submatrix. Then equating (LL⊤)[-k, -k] = L̃L̃⊤, we get

L̃
(k)
1 ← L

(k)
1 , L̃

(k)
2 ← L

(k)
2 , L̃(k) ← chol(LkL

⊤
k + ℓk2ℓ

⊤
k2) ,

where L̃(k) is simply a rank-1 update of Lk. Hence, cholDelUpdate(L, k) boils down
to a simple rank-1 update of a (n − k) × (n − k) submatrix of the factor L. In case
of cholBlockDelUpdate(L, I), where I is a subset of the indices {1, . . . , n}, of size k,
and consisting of consecutive indices, the problem simply reduces to a rank-k update of a
(n−m)× (n−m) matrix where m = max(I). While the R package mgcv provide these utili-
ties for rank-1 updates following Golub and Van Loan (2013), we implement a more memory-
efficient algorithm proposed by Krause and Igel (2015). In spStack, we provide a R wrapper
for all these C++ routines in the R functions cholUpdateRankOne(), cholUpdateDel() and
cholUpdateDelBlock() to provide utilities for advanced practitioners interested in developing
their own cross-validation algorithms. See examples in Appendix B.
spStack also depends on some R packages including CVXR which is used to find optimal
stacking weights, future (Bengtsson 2021) and future.apply to utilize its cross-platform paral-
lelization plans to access multi-core implementation of our stacking algorithm. To be specific,
depending on parallel backend available, users can set up their own plan using the future()
function and simply set the argument parallel = TRUE in the functions spLMstack() or,
spGLMstack() to execute posterior sampling for the G candidate models in parallel. Other
imports include ggplot2 and MBA that are used mainly for visualization purposes.

Soumyakanti Pan, Sudipto Banerjee 17

5. Illustrations
In this section, we demonstrate different models offered by spStack using synthetic data.

5.1. Gaussian spatial regression

Section 2.1 provides code for sampling from the posterior (5) conditional on fixed values
of θsp and δ2 using the function spLMexact(). This function also has optional argument
loopd, which when set to TRUE, evaluates leave-one-out predictive densities using the method
assigned by the argument loopd.method. Valid arguments for loop.method are "exact"
which evaluates (14), and "PSIS" which uses (17). See the following code.

R> set.seed(1729)
R> mod3 <- spLMexact(y ~ x1, data = simGaussian,
+ coords = as.matrix(simGaussian[, c("s1", "s2")]),
+ cor.fn = "matern", spParams = list(phi = 3, nu = 0.75),
+ noise_sp_ratio = 0.8, n.samples = 100,
+ loopd = TRUE, loopd.method = "exact", verbose = FALSE)

R> mod4 <- spLMexact(y ~ x1, data = simGaussian,
+ coords = as.matrix(simGaussian[, c("s1", "s2")]),
+ cor.fn = "matern", spParams = list(phi = 3, nu = 0.75),
+ noise_sp_ratio = 0.8, n.samples = 100,
+ loopd = TRUE, loopd.method = "PSIS", verbose = FALSE)

We collect the LOO-PD calculated by these two methods and compare them in Figure 2.

R> loopd_exact <- mod3$loopd
R> loopd_psis <- mod4$loopd
R> loopd_df <- data.frame(exact = loopd_exact, psis = loopd_psis)
R> library(ggplot2)
R> ggplot(data = loopd_df, aes(x = exact)) +
+ geom_point(aes(y = psis), size = 1, alpha = 0.5) +
+ geom_abline(slope = 1, intercept = 0, color = "red", alpha = 0.5) +
+ xlab("Exact") + ylab("PSIS") + theme_bw() +
+ theme(panel.background = element_blank(), panel.grid = element_blank(),
+ aspect.ratio = 1)

From Figure 2, we observe that the approximation using PSIS works satisfactorily in terms
of calculation of LOO-PD. Moreover, on a machine running Apple M1 chip with 8 GB mem-
ory, the median execution time for evaluation of LOO-PD is 2.5 seconds for exact and 350
milliseconds for PSIS, delivering a speed-up factor of approximately 7.5.
Next, we illustrate the spLMstack() function for implementing Bayesian predictive stacking
algorithm for spatial Gaussian data. We use the default settings for the priors, choose the
LOO-PD calculation method to be PSIS, and set some candidate values of θsp and δ2. The set
of candidate models are constructed by taking a Cartesian product of the grid of candidate
values of the parameters. For example, in the following code, we have 3 candidate values for
ϕ, 2 candidate values each for ν and δ2, which entails 3× 2× 2 = 12 candidate models.

18 spStack: Bayesian Geostatistics Using Predictive Stacking in R

−4

−3

−2

−1

−4 −3 −2 −1
Exact

P
S

IS

Figure 2: Comparison of exact leave-one-out predictive densities with that calculated using
Pareto-smoothed importance sampling.

R> mod5 <- spLMstack(y ~ x1, data = simGaussian,
+ coords = as.matrix(simGaussian[, c("s1", "s2")]),
+ cor.fn = "matern",
+ params.list = list(phi = c(1.5, 3, 5),
+ nu = c(0.5, 1.5),
+ noise_sp_ratio = c(0.5, 1.5)),
+ n.samples = 1000, loopd.method = "PSIS",
+ parallel = FALSE, solver = "ECOS", verbose = TRUE)

STACKING WEIGHTS:

| phi | nu | noise_sp_ratio | weight |
+----------+-----+-----+----------------+--------+
Model 1	1.5	0.5	0.5	0.000
Model 2	3.0	0.5	0.5	0.148
Model 3	5.0	0.5	0.5	0.000
Model 4	1.5	1.5	0.5	0.000
Model 5	3.0	1.5	0.5	0.000
Model 6	5.0	1.5	0.5	0.852
Model 7	1.5	0.5	1.5	0.000
Model 8	3.0	0.5	1.5	0.000
Model 9	5.0	0.5	1.5	0.000
Model 10	1.5	1.5	1.5	0.000
Model 11	3.0	1.5	1.5	0.000
Model 12	5.0	1.5	1.5	0.000
+----------+-----+-----+----------------+--------+

Users can check the solver status of the optimization by issuing the following.

Soumyakanti Pan, Sudipto Banerjee 19

−2

−1

0

1

2

−1 0 1
True z

S
ta

ck
ed

 p
os

te
rio

r
of

 z

Figure 3: Comparison of true spatial effects and their corresponding stacked posterior distri-
butions in analysis of synthetic Gaussian data.

R> print(mod5[["solver.status"]])

"optimal"

spStack also provides the helper function called stackedSampler() to sample from the stacked
posterior. Subsequent posterior inference proceeds from these samples.

R> post_samps <- stackedSampler(mod5)
R> post_beta <- post_samps[["beta"]]
R> summary_beta <- t(apply(post_beta, 1,
+ function(x) quantile(x, c(0.025, 0.5, 0.975))))
R> rownames(summary_beta) <- mod5[["X.names"]]
R> print(summary_beta)

2.5% 50% 97.5%
(Intercept) 1.185252 2.040483 2.873048
x1 4.949013 5.001442 5.052616

Moreover, we compare the posterior samples of the spatial random effects with their corre-
sponding true values in Figure 3. spStack also provides functions to plot interpolated spatial
surfaces for visualization purposes. While surfaceplot() creates a single spatial surface
plot, surfaceplot2() returns two side-by-side surface plots with a common color scale.

R> postmedian_z <- apply(post_z, 1, median)
R> simGaussian$z_hat <- postmedian_z
R> plot_z <- surfaceplot2(simGaussian, coords_name = c("s1", "s2"),
+ var1_name = "z_true", var2_name = "z_hat")
R> library(ggpubr)
R> ggarrange(plotlist = plot_z, common.legend = TRUE, legend = "right")

20 spStack: Bayesian Geostatistics Using Predictive Stacking in R

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
s1

s 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
s1

s 2

z

−1.0

0.0

1.0

Figure 4: Comparison of interpolated spatial surfaces of true spatial effects (left) and their
corresponding stacked posterior median (right) in analysis of synthetic Gaussian data.

5.2. Non-Gaussian spatial regression
In spStack, we offer functions for Bayesian analysis of geostatistical count data including Pois-
son and binomial counts as well as spatial binary data. Section 2.2 introduces the function
spGLMeaxct() which facilitates drawing samples from (9) conditional on fixed values of pro-
cess parameters θsp and boundary adjustment parameter αϵ. For implementing our stacking
algorithm, we build our collection of candidate models based on a Cartesian product of a
grid of candidate values of these parameters. This can be supplied into spGLMstack() using
the argument params.list which is a named list of maximum length 3. The list contains
candidate values of phi, nu and boundary, with each containing a numeric vector of candidate
values of ϕ, ν and αϵ, respectively. The arguments n.samples denote the number of pos-
terior samples Ns, and, loopd.controls is a list containing different parameters necessary
to substantiate the calculation of LOO-PD. For example, loopd.controls = list(method
= "CV", CV.K = 10, nMC = 1000) corresponds to 10-fold cross validation with number of
Monte Carlo samples Nmc = 1000. See below for examples.

Analysis of spatial poisson counts
In practice, point-referenced count data are often modeled as poisson counts, e.g., tree counts
in forestry, species sightings in ecology, traffic accident counts etc. We demonstrate below
how to use spGLMexact() to analyze such data. Suppose we choose 3 candidate values of
ϕ and 2 candidate values each for ν and αϵ, and store them in cand_list. Note that, this
implies 12 candidate models in total. In addition, we also assign the settings under which the
LOO-PD will be calculated in loopd_settings.

R> cand_list <- list(phi = c(3, 7, 10),
+ nu = c(0.5, 1.5),
+ boundary = c(0.5, 0.6))
R> loopd_settings <- list(method = "CV", CV.K = 10, nMC = 1000)

Here, we show how to use the future package to implement spGLMstack() in parallel. Issuing
plan("multicore", workers = 6) divides the task of fitting 12 models into 6 cores. After

Soumyakanti Pan, Sudipto Banerjee 21

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
s1

s 2

y

0

25

50

75

(a)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
s1

s 2

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
s1

s 2

z

−1.0

0.0

1.0

(b)

Figure 5: Analysis of synthetic spatial poisson counts: (a) Raw data, (b) interpolated spatial
surfaces of true spatial effects (left) and their corresponding posterior median (right).

completion of the task, we close the forking process by issuing plan("sequential"). See the
future manual for custom parallelization plans on systems with advanced parallel backends.

R> library("future")
R> plan("multicore", workers = 6)
R> set.seed(1729)
R> mod6 <- spGLMstack(y ~ x1, data = simPoisson, family = "poisson",
+ coords = as.matrix(simPoisson[, c("s1", "s2")]),
+ cor.fn = "matern", params.list = cand_list,
+ n.samples = 1000, loopd.controls = loopd_settings,
+ parallel = FALSE, solver = "ECOS", verbose = TRUE)
R> plan("sequential")

Similar to spLMstack(), spGLMstack() also returns an object of class ‘spGLMstack’, which
can be passed into stackedSampler() for obtaining samples from the stacked posterior distri-
bution. The samples from the stacked posterior can be analyzed as discussed earlier. Figure 5
shows the raw spatial counts and the interpolated spatial surfaces of the true spatial effects
and their posterior median based on samples drawn from the stacked posterior. Figure 5
compares the raw counts and the learning of the spatial surface. We observe elevated values
on spatial surface of the posterior median of the spatial effects in regions with higher counts
and successfully captures the pattern seen in the true spatial surface.

Analysis of spatial binomial counts

Point-referenced binomial counts is a common choice of model in surveys studying preva-
lence of various diseases over large regions. For example, Wong, Flegg, Golding, and Kan-
danaarachchi (2023) provides an elaborate review of recent computational methods for geo-
statistical modeling of spatial binomial count data to map malaria prevalence. The syntax
for analyzing binomial counts using spGLMexact() is very similar with a small change in the
symbolic formula that defines the model. For example, in the synthetic binomial count data
simBinom that is available in spStack, besides the predictor x1, it has the response y which
denotes the number of successes and n_trials which denotes the total number of trials at
each location. We express the model using the symbolic formula cbind(y, n_trials) ~ x1.

22 spStack: Bayesian Geostatistics Using Predictive Stacking in R

R> data(simBinom)
R> cand_list <- list(phi = c(2, 5, 8), nu = c(1.0, 1.5),
+ boundary = c(0.5, 0.6))
R> mod7 <- spGLMstack(cbind(y, n_trials) ~ x1, data = simBinom,
+ family = "binomial",
+ coords = as.matrix(simBinom[, c("s1", "s2")]),
+ cor.fn = "matern", params.list = cand_list,
+ n.samples = 1000, loopd.controls = loopd_settings,
+ parallel = FALSE, solver = "ECOS", verbose = TRUE)

Analysis of spatial binary data

Point-referenced spatial binary data (e.g., presence/absence) is widely used in many scientific
disciplines including, but not limited to, satellite imagery, species occurrence, voting outcomes
etc. See below example code for analyzing such data using the spGLMexact() function.

R> data(simBinary)
R> cand_list <- list(phi = c(2, 5, 8), nu = c(0.75, 1.25),
+ boundary = c(0.5, 0.6))
R> mod8 <- spGLMstack(y ~ x1, data = simBinary, family = "binary",
+ coords = as.matrix(simBinom[, c("s1", "s2")]),
+ cor.fn = "matern", params.list = cand_list,
+ n.samples = 1000, loopd.controls = loopd_settings,
+ parallel = FALSE, solver = "ECOS", verbose = TRUE)

This returns an object of class ‘spGLMstack’ and can be analyzed similarly, as discussed earlier
in case of the synthetic spatial poisson count data.

6. Summary and future directions
The development of spStack is aimed towards delivering user-friendly functions for Bayesian
analysis of geostatistical data. Since traditional Bayesian geostatistical models typically in-
volve repeated expensive dense matrix operations within MCMC and hence entails unreason-
ably prolonged execution times, spStack enhances the practicality of such models by demon-
strating Bayesian predictive stacking to be an effective tool for estimating spatial regression
models and yielding robust predictions for both Gaussian and non-Gaussian point-referenced
spatial data. We exploit analytically accessible distribution theory pertaining to Bayesian
analysis of linear mixed models (LMM) as well as generalized linear mixed models (GLMM),
that enables us to directly sample from the posterior distributions. From a computational
viewpoint, spStack implements efficient algorithms to tackle the non-trivial and challenging
problem of evaluating leave-one-out predictive densities for spatially dependent data. Core
functions also features seamless integration with different parallel backends further acceler-
ating inference. The contribution of spStack falls under integrative Bayesian learning as it
focuses largely on effectively combining inference across different closed-form posterior dis-
tributions of geostatistical models by circumventing inference on weakly identified parame-
ters. Future developments will consider functionalities for analyzing different kinds of spatial-

Soumyakanti Pan, Sudipto Banerjee 23

temporal data, and, adapting to variants of Gaussian process models that scale inference to
massive datasets by evading the Cholesky decomposition of dense correlation matrices.

Computational details
The results in this paper were obtained using R 4.4.1 with programs executed on platform
aarch64-apple-darwin20 with an Apple silicon M1 chip, running under MacOS Sequoia 15.0.1.
Package versions: spStack 1.0.1, future 1.34.0, ggpubr 0.6.0, ggplot2 3.5.1, and knitr 1.48.

Acknowledgments
Sudipto Banerjee and Soumyakanti Pan were supported by two research grants from the
National Institute of Environmental Health Sciences (NIEHS), one grant from the National
Institute of General Medical Science (NIGMS) and another from the Division of Mathematical
Sciences of the National Science Foundation (NSF-DMS).

References

Abramowitz M, Stegun IA (eds.) (1965). Handbook of Mathematical Functions with Formulas,
Graphs and Mathematical Tables. Dover Publications, Inc., New York.

Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Croz JD, Greenbaum A,
Hammarling S, McKenney A, Sorensen D (1999). LAPACK Users’ Guide. Philadelphia, PA,
third edition. doi:10.1137/1.9780898719604. URL http://www.netlib.org/lapack/
lug/.

ApS M (2024). Rmosek: The R-to-MOSEK optimization interface. R package version 10.2.0,
URL http://www.mosek.com/.

Bakar KS, Sahu SK (2015). “spTimer: Spatio-Temporal Bayesian Modeling Using R.” Journal
of Statistical Software, 63(15), 1–32. doi:10.18637/jss.v063.i15. URL https://doi.
org/10.18637/jss.v063.i15.

Banerjee S (2020). “Modeling massive spatial datasets using a conjugate Bayesian linear
modeling framework.” Spatial Statistics, 37, 100417. ISSN 2211-6753. doi:https://doi.
org/10.1016/j.spasta.2020.100417. Frontiers in Spatial and Spatio-temporal Research.

Banerjee S, Carlin BP, Gelfand AE (2014). Hierarchical Modeling and Analysis for Spatial
Data. 2nd edition. Chapman and Hall/CRC, New York. doi:10.1201/b17115.

Bengtsson H (2021). “A Unifying Framework for Parallel and Distributed Processing in
R using Futures.” The R Journal, 13(2), 208–227. doi:10.32614/RJ-2021-048. URL
https://doi.org/10.32614/RJ-2021-048.

Bernardo J, Smith A (1994). Bayesian Theory. John Wiley and Sons, Chichester, UK.

https://doi.org/10.1137/1.9780898719604
http://www.netlib.org/lapack/lug/
http://www.netlib.org/lapack/lug/
http://www.mosek.com/
https://doi.org/10.18637/jss.v063.i15
https://doi.org/10.18637/jss.v063.i15
https://doi.org/10.18637/jss.v063.i15
https://doi.org/https://doi.org/10.1016/j.spasta.2020.100417
https://doi.org/https://doi.org/10.1016/j.spasta.2020.100417
https://doi.org/10.1201/b17115
https://doi.org/10.32614/RJ-2021-048
https://doi.org/10.32614/RJ-2021-048

24 spStack: Bayesian Geostatistics Using Predictive Stacking in R

Bivand R, Nowosad J (2024). CRAN Task View: Analysis of Spatial Data. Version 2024-06-18,
URL https://CRAN.R-project.org/view=Spatial.

Bradley JR, Clinch M (2024). “Generating Independent Replicates Directly from the Posterior
Distribution for a Class of Spatial Hierarchical Models.” Journal of Computational and
Graphical Statistics, 0(0), 1–17. doi:10.1080/10618600.2024.2365728.

Bradley JR, Holan SH, Wikle CK (2020). “Bayesian Hierarchical Models With Conju-
gate Full-Conditional Distributions for Dependent Data From the Natural Exponential
Family.” Journal of the American Statistical Association, 115(532), 2037–2052. doi:
10.1080/01621459.2019.1677471.

Breiman L (1996). “Stacked regressions.” Machine learning, 24(1), 49–64. doi:10.1023/A:
1018046112532.

Carlin BP, Louis TA (2008). Bayesian Methods for Data Analysis. 3rd edition. Chapman and
Hall/CRC, New York. doi:10.1201/b14884.

Chilès JP, Delfiner P (2012). Geostatistics: Modeling Spatial Uncertainty. John Wiley &
Sons, New York. doi:10.1002/9781118136188.

Christensen OF, Ribeiro PJ (2002). “geoRglm: A package for generalised linear spatial
models.” R News, 2, 26–28. ISSN 1609-3631. URL https://journal.r-project.org/
articles/RN-2002-013/.

Clyde MA, Iversen ES (2013). “Bayesian model averaging in the M-open framework.”
In Bayesian Theory and Applications, pp. 483–498. Oxford University Press. ISBN
9780199695607. doi:10.1093/acprof:oso/9780199695607.003.0024.

Cressie NAC (1993). Statistics for Spatial Data. 2nd edition. John Wiley & Sons, New York.
doi:10.1002/9781119115151.

de Valpine P, Turek D, Paciorek C, Anderson-Bergman C, Temple Lang D, Bodik R (2017).
“Programming with models: writing statistical algorithms for general model structures
with NIMBLE.” Journal of Computational and Graphical Statistics, 26, 403–417. doi:
10.1080/10618600.2016.1172487.

Diaconis P, Ylvisaker D (1979). “Conjugate Priors for Exponential Families.” The Annals of
Statistics, 7(2), 269 – 281. doi:10.1214/aos/1176344611.

Diggle PJ, Ribeiro PJ (2007). Model-based Geostatistics. Springer-Verlag New York, New
York. doi:10.1007/978-0-387-48536-2.

Ding P (2016). “On the Conditional Distribution of the Multivariate t Distribution.” The
American Statistician, 70(3), 293–295. doi:10.1080/00031305.2016.1164756.

Finley AO, Banerjee S, Carlin BP (2007). “spBayes: An R Package for Univariate and
Multivariate Hierarchical Point-referenced Spatial Models.” Journal of Statistical Software,
19(4), 1–24. doi:10.18637/jss.v019.i04.

Fu A, Narasimhan B, Boyd S (2020). “CVXR: An R Package for Disciplined Convex Op-
timization.” Journal of Statistical Software, 94(14), 1–34. doi:10.18637/jss.v094.i14.
URL https://www.jstatsoft.org/index.php/jss/article/view/v094i14.

https://CRAN.R-project.org/view=Spatial
https://doi.org/10.1080/10618600.2024.2365728
https://doi.org/10.1080/01621459.2019.1677471
https://doi.org/10.1080/01621459.2019.1677471
https://doi.org/10.1023/A:1018046112532
https://doi.org/10.1023/A:1018046112532
https://doi.org/10.1201/b14884
https://doi.org/10.1002/9781118136188
https://journal.r-project.org/articles/RN-2002-013/
https://journal.r-project.org/articles/RN-2002-013/
https://doi.org/10.1093/acprof:oso/9780199695607.003.0024
https://doi.org/10.1002/9781119115151
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1080/10618600.2016.1172487
https://doi.org/10.1214/aos/1176344611
https://doi.org/10.1007/978-0-387-48536-2
https://doi.org/10.1080/00031305.2016.1164756
https://doi.org/10.18637/jss.v019.i04
https://doi.org/10.18637/jss.v094.i14
https://www.jstatsoft.org/index.php/jss/article/view/v094i14

Soumyakanti Pan, Sudipto Banerjee 25

Gelfand AE, Dey DK, Chang H (1992). “Model Determination using Predictive Distri-
butions with Implementation via Sampling-Based Methods.” In Bayesian Statistics 4:
Proceedings of the Fourth Valencia International Meeting, Dedicated to the memory of
Morris H. DeGroot, 1931–1989. Oxford University Press. ISBN 9780198522669. doi:
10.1093/oso/9780198522669.003.0009.

Gelman A, Carlin JB, Stern HS, Dunson DB, Vehtari A, Rubin DB (2013). Bayesian Data
Analysis. 3rd edition. Chapman and Hall/CRC, New York. doi:10.1201/b16018.

Gilks W, Richardson S, Spiegelhalter D (1995). Markov Chain Monte Carlo in Practice. 1st
edition. Chapman and Hall/CRC, New York. doi:10.1201/b14835.

Golub GH, Van Loan CF (2013). Matrix Computations - 4th Edition. 4th edition. Johns
Hopkins University Press, Philadelphia, PA. doi:10.1137/1.9781421407944.

Hoeting JA, Madigan D, Raftery AE, Volinsky CT (1999). “Bayesian model averaging: a
tutorial (with comments by M. Clyde, David Draper and E. I. George, and a rejoinder by
the authors).” Statistical Science, 14(4), 382 – 417. doi:10.1214/ss/1009212519.

Krause O, Igel C (2015). “A More Efficient Rank-one Covariance Matrix Update for Evolu-
tion Strategies.” In Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII, FOGA ’15, p. 129–136. Association for Computing Machinery, New York,
NY, USA. ISBN 9781450334341. doi:10.1145/2725494.2725496.

Lawson C, Hanson R, Kincaid D, Krogh F (1979). “Basic Linear Algebra Subprograms
for Fortran usage.” ACM Transactions on Mathematical Software, 5(3), 308–323. doi:
10.1145/355841.355847.

Le T, Clarke B (2017). “A Bayes Interpretation of Stacking for M-Complete and M-Open
Settings.” Bayesian Analysis, 12(3), 807 – 829. doi:10.1214/16-BA1023.

Lunn D, Spiegelhalter D, Thomas A, Best N (2009). “The BUGS project: Evolution, critique
and future directions.” Statistics in Medicine, 28(25), 3049–3067. doi:https://doi.org/
10.1002/sim.3680.

Madigan D, Raftery AE, Volinsky C, Hoeting J (1996). “Bayesian model averaging.” In
Proceedings of the AAAI Workshop on Integrating Multiple Learned Models, Portland, OR,
pp. 77–83.

Moller J, Waagepetersen RP (2003). Statistical Inference and Simulation for Spatial Point
Processes. Taylor & Francis, New York. doi:10.1201/9780203496930.

Neal R (2011). “MCMC Using Hamiltonian Dynamics.” In Handbook of Markov Chain Monte
Carlo, pp. 113–162. Chapman and Hall/CRC. doi:10.1201/b10905.

Pan S, Banerjee S (2024). spStack: Bayesian Geostatistics Using Predictive Stacking. R
package version 1.0.1, URL https://CRAN.R-project.org/package=spStack.

Pan S, Zhang L, Bradley JR, Banerjee S (2024). “Bayesian Inference for Spatial-temporal
Non-Gaussian Data Using Predictive Stacking.” doi:10.48550/arXiv.2406.04655.

https://doi.org/10.1093/oso/9780198522669.003.0009
https://doi.org/10.1093/oso/9780198522669.003.0009
https://doi.org/10.1201/b16018
https://doi.org/10.1201/b14835
https://doi.org/10.1137/1.9781421407944
https://doi.org/10.1214/ss/1009212519
https://doi.org/10.1145/2725494.2725496
https://doi.org/10.1145/355841.355847
https://doi.org/10.1145/355841.355847
https://doi.org/10.1214/16-BA1023
https://doi.org/https://doi.org/10.1002/sim.3680
https://doi.org/https://doi.org/10.1002/sim.3680
https://doi.org/10.1201/9780203496930
https://doi.org/10.1201/b10905
https://CRAN.R-project.org/package=spStack
https://doi.org/10.48550/arXiv.2406.04655

26 spStack: Bayesian Geostatistics Using Predictive Stacking in R

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ribeiro Jr PJ, Diggle P, Christensen O, Schlather M, Bivand R, Ripley B (2024). geoR:
Analysis of Geostatistical Data. R package version 1.9-4, URL https://CRAN.R-project.
org/package=geoR.

Robert CP, Casella G (2004). Monte Carlo Statistical Methods. 2nd edition. Springer-Verlag,
New York. doi:10.1007/978-1-4757-4145-2.

Rue H, Martino S, Chopin N (2009). “Approximate Bayesian inference for latent Gaussian
models by using integrated nested Laplace approximations.” Journal of the Royal Statistical
Society B, 71(2), 319–392. doi:https://doi.org/10.1111/j.1467-9868.2008.00700.x.

Sainsbury-Dale M, Zammit-Mangion A, Cressie N (2024). “Modeling Big, Heterogeneous,
Non-Gaussian Spatial and Spatio-Temporal Data Using FRK.” Journal of Statistical Soft-
ware, 108(10), 1–39. doi:10.18637/jss.v108.i10.

Schabenberger O, Gotway CA (2005). Statistical Methods for Spatial Data Analysis. Taylor
& Francis, New York. doi:10.1201/9781315275086.

Smith BJ, Yan J, Cowles MK (2008). “Unified geostatistical modeling for data fusion and
spatial heteroskedasticity with R package ramps.” Journal of Statistical Software, 25(10),
1–21. doi:10.18637/jss.v025.i10.

Stan Development Team (2024). Stan Modeling Language Users Guide and Reference Manual.
Version 2.35, URL https://mc-stan.org.

Tae Yoon Kim JSP, Cox DD (2002). “Fast Algorithm for Cross-Validation of the Best Linear
Unbiased Predictor.” Journal of Computational and Graphical Statistics, 11(4), 823–835.
doi:10.1198/106186002826.

Thomas A, Best N, Lunn D, Arnold R, Spiegelhalter D (2014). GeoBUGS User
Manual. Version 3.2.3, URL https://chjackson.github.io/openbugsdoc/GeoBUGS/
Manuals/Manual.html.

Thomas A, O’Hara B, Ligges U, Sturtz S (2006). “Making BUGS open.” R News, 6(1), 12–17.
URL https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf.

Vehtari A, Gabry J, Magnusson M, Yao Y, Bürkner PC, Paananen T, Gelman A (2024a).
“loo: Efficient leave-one-out cross-validation and WAIC for Bayesian models.” R package
version 2.8.0, URL https://mc-stan.org/loo/.

Vehtari A, Gelman A, Gabry J (2017). “Practical Bayesian Model Evaluation Using Leave-
One-out Cross-Validation and WAIC.” Statistics and Computing, 27(5), 1413–1432. ISSN
0960-3174. doi:10.1007/s11222-016-9696-4.

Vehtari A, Simpson D, Gelman A, Yao Y, Gabry J (2024b). “Pareto Smoothed Importance
Sampling.” Journal of Machine Learning Research, 25(72), 1–58. URL http://jmlr.org/
papers/v25/19-556.html.

https://www.R-project.org/
https://CRAN.R-project.org/package=geoR
https://CRAN.R-project.org/package=geoR
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/https://doi.org/10.1111/j.1467-9868.2008.00700.x
https://doi.org/10.18637/jss.v108.i10
https://doi.org/10.1201/9781315275086
https://doi.org/10.18637/jss.v025.i10
https://mc-stan.org
https://doi.org/10.1198/106186002826
https://chjackson.github.io/openbugsdoc/GeoBUGS/Manuals/Manual.html
https://chjackson.github.io/openbugsdoc/GeoBUGS/Manuals/Manual.html
https://cran.r-project.org/doc/Rnews/Rnews_2006-1.pdf
https://mc-stan.org/loo/
https://doi.org/10.1007/s11222-016-9696-4
http://jmlr.org/papers/v25/19-556.html
http://jmlr.org/papers/v25/19-556.html

Soumyakanti Pan, Sudipto Banerjee 27

Wackernagel H (2003). Multivariate Geostatistics. Springer-Verlag Berlin, Heidelberg. doi:
10.1007/978-3-662-05294-5.

Wikle CK, Cressie N (2011). Statistics for Spatio-Temporal Data. John Wiley & Sons.

Wolpert DH (1992). “Stacked generalization.” Neural Networks, 5(2), 241–259. ISSN 0893-
6080. doi:https://doi.org/10.1016/S0893-6080(05)80023-1.

Wong S, Flegg JA, Golding N, Kandanaarachchi S (2023). “Comparison of new compu-
tational methods for spatial modelling of malaria.” Malaria Journal, 22(356). doi:
10.1186/s12936-023-04760-7.

Yao Y, Pirš G, Vehtari A, Gelman A (2021). “Bayesian hierarchical stacking: Some models
are (somewhere) useful.” Bayesian Analysis, 1(1), 1–29. doi:10.1214/21-BA1287.

Yao Y, Vehtari A, Gelman A (2022). “Stacking for Non-mixing Bayesian Computations:
The Curse and Blessing of Multimodal Posteriors.” Journal of Machine Learning Research,
23(79), 1–45. URL http://jmlr.org/papers/v23/20-1426.html.

Yao Y, Vehtari A, Simpson D, Gelman A (2018). “Using Stacking to Average Bayesian
Predictive Distributions (with Discussion).” Bayesian Analysis, 13(3), 917 – 1007. doi:
10.1214/17-BA1091.

Zammit-Mangion A, Cressie N (2021). “FRK: An R Package for Spatial and Spatio-Temporal
Prediction with Large Datasets.” Journal of Statistical Software, 98(4), 1–48. doi:10.
18637/jss.v098.i04.

Zhang H (2004). “Inconsistent Estimation and Asymptotically Equal Interpolations in Model-
Based Geostatistics.” Journal of the American Statistical Association, 99(465), 250–261.
doi:10.1198/016214504000000241.

Zhang J, Stephens MA (2009). “A New and Efficient Estimation Method for the Generalized
Pareto Distribution.” Technometrics, 51(3), 316–325. doi:10.1198/tech.2009.08017.

Zhang L, Tang W, Banerjee S (2024). “Bayesian Geostatistics Using Predictive Stacking.”
doi:10.48550/arXiv.2304.12414.

https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/10.1007/978-3-662-05294-5
https://doi.org/https://doi.org/10.1016/S0893-6080(05)80023-1
https://doi.org/10.1186/s12936-023-04760-7
https://doi.org/10.1186/s12936-023-04760-7
https://doi.org/10.1214/21-BA1287
http://jmlr.org/papers/v23/20-1426.html
https://doi.org/10.1214/17-BA1091
https://doi.org/10.1214/17-BA1091
https://doi.org/10.18637/jss.v098.i04
https://doi.org/10.18637/jss.v098.i04
https://doi.org/10.1198/016214504000000241
https://doi.org/10.1198/tech.2009.08017
https://doi.org/10.48550/arXiv.2304.12414

28 spStack: Bayesian Geostatistics Using Predictive Stacking in R

A. Conjugate priors for exponential family
This section familiarizes the conjugate priors for the natural exponential family (Diaconis
and Ylvisaker 1979) and their multivariate extensions (Bradley et al. 2020; Bradley and
Clinch 2024). This family of distributions play a central role in development of the Bayesian
hierarchical models for non-Gaussian outcomes.

A.1. The Diaconis-Ylvisaker distribution

Let Y be distributed from the natural exponential family, EF(η; b, ψ), with density

p(Y | η) = exp{ηY − bψ(η) + c(Y)}, Y ∈ Y , η ∈H , (A1)

where Y denotes the support of Y and H = {η : ψ(η) <∞} denotes the natural parameter
space and, therefore, the support of η. The scalar b may be unknown, while ψ(·) and c(·) are
known functions. Diaconis and Ylvisaker (1979) provides a proper conjugate prior for η in
(A1) as DY(α, κ;ψ), which has the density

p(η | α, κ) ∝ exp{αη − κψ(η)}, η ∈H ,
α

κ
∈ Y , κ > 0 . (A2)

It is easily seen that the posterior distribution η | Y, α, κ ∼ DY(α + Y, κ + b;ψ). There are
several special cases of the DY distribution other than the Gaussian (ψ = ψ1), log-gamma
(ψ = ψ2), and logit-beta (ψ = ψ3) distributions, several of which do not correspond to a
member of the exponential family. For example, α = 0, ψ(t) = ψ4(t; ρ) = log(1 + t2/ρ), and
κ = (ρ+ 1)/2 with ρ > 0 results in a Student’s t-distribution with ρ degrees of freedom.

A.2. The (Generalized) Conjugate Multivariate distribution

A multivariate version of (A2) is constructed using linear combinations of mutually indepen-
dent DY random variables. Let ζ be the n× 1 random vector

ζ = µ+ Lη , (A3)

where ζ ∈ M , M = {ζ : ζ = µ + Lη, η ∈ H n}, µ ∈ Rn denotes a location vector, L is an
n × n lower-triangular matrix with positive diagonal elements and the n × 1 random vector
η = (η1, . . . , ηn)⊤ consists of n mutually independent DY random variables, ηi ∼ DY(αi, κi;ψ)
with κi > 0 for i = 1, . . . , n. Define ζ ∼ CM(µ,L, α, κ;ψ) with unnormalized density

p(ζ | µ,L, α, κ) ∝ exp
{
α⊤L−1(ζ − µ)− κ⊤ψ(L−1(ζ − µ))

}
det(L−1) (A4)

for all ζ ∈ M , where ψ operates element-wise on L−1(ζ − µ), α = (α1, . . . , αn)⊤ and κ =
(κ1, . . . , κn)⊤. If ζ = (ζ⊤

1 , ζ
⊤
2)⊤ is distributed as CM(µ,L, α, κ;ψ), where ζ1 is r× 1 and ζ2 is

(n− r)× 1, then the conditional distribution of ζ1 given ζ2 is CMc(µ∗, A1, α, κ;ψ) with

p(ζ1 | ζ2 = c2, µ
∗, A1, α, κ) ∝ exp{α⊤(A1ζ1 − µ∗)− κ⊤ψ(A1ζ1 − µ∗)} , (A5)

as the unnormalized density for all (ζ⊤
1 , c

⊤
2)⊤ ∈M . Here, A1 is defined as the n×r submatrix

of L−1 = [A1 : A2], and µ∗ = L−1µ−A2c2 for some c2 ∈ Rn−r. The proportionality constant
in (A5) is strictly positive and finite ensuring that (A5) is proper (Bradley et al. 2020).

Soumyakanti Pan, Sudipto Banerjee 29

Bradley and Clinch (2024) generalize the CM distribution by relating ζ, µ, L and η as in (A3),
where ζ = (ζ⊤

1 , . . . , ζ
⊤
K)⊤ and η = (η⊤

1 , . . . , η
⊤
K)⊤ are n×1 with n = ∑K

k=1 nk, and each element
of ηk is independently distributed as ηk,i ∼ DY(αk,i, κk,i;ψk), L is an n× n lower-triangular
matrix with positive diagonal elements and µ is an n× 1 location parameter. The density is
written analogously to (A4) with ζ ∈ N , N = {ζ : ζ = µ+ Lη, ηk,i ∈Hk, i = 1, . . . , nk, k =
1, . . . ,K} with Hk being the parameter space corresponding to the log partition function ψk,
αk,i/κk,i ∈ Yk, κk,i > 0 and ψ(L−1(ζ−µ)) = (ψ1(J1L

−1(ζ−µ))⊤, . . . , ψK(JKL
−1(ζ−µ))⊤)⊤,

where Jk = [0 : Ink
: 0] is nk × n and each ψk(·) operates element-wise on the vector of

arguments, α = (α⊤
1 , . . . , α

⊤
K)⊤ and κ = (κ⊤

1 , . . . , κ
⊤
K)⊤ are n× 1 parameter vectors.

We say ζ is distributed as GCM(µ,L, α, κ;ψ). A conditional GCM density up to a normalizing
constant is obtained analogous to (A5) and denoted as GCMc(µ∗, A1, α, κ;ψ). We use these
distributions for building the hierarchical models in the following sections. In general, we
may be unable to sample directly from either the conditional CM or the conditional GCM
distributions except for some familiar exceptions (e.g., the conditional distribution of Gaussian
is indeed Gaussian). However, it is possible to consider an augmented model with a particular
structure that yields a posterior distribution in the GCM family that is easy to sample from.

B. Examples of Cholesky algorithms
We show an example of a rank-1 update on a n× n positive definite matrix A with a vector
v. We find the Cholesky factor of the matrix αA+ βvv⊤ for α = β = 1 separately using our
proposed function as well as the base R function chol and check numerical equality.

R> set.seed(1729)
R> tol <- 1E-12
R> n <- 10
R> A <- matrix(rnorm(n^2), n, n)
R> A <- crossprod(A)
R> cholA <- chol(A)
R> v <- 1:n
R> APlusvvT <- A + tcrossprod(v)
R> cholA1 <- t(chol(APlusvvT))
R> cholA2 <- cholUpdateRankOne(cholA, v, alpha = 1, beta = 1, lower = F)
R> print(max(abs(cholA1 - cholA2)) < tol)

TRUE

Thus, we test the correctness of the cholUpdateRankOne() function. We show results of
similar tests for cholUpdateDel() and cholUpdateDelBlock() in the example code below.
In case of cholUpdateRankOne(), ind = 2 corresponds to deletion of the second row/column.

R> ind <- 2
R> A1 <- A[-ind, -ind]
R> cholA3 <- t(chol(A1))
R> cholA4 <- cholUpdateDel(cholA, del.index = ind, lower = F)
R> print(max(abs(cholA3 - cholA4)) < tol)

30 spStack: Bayesian Geostatistics Using Predictive Stacking in R

TRUE

In case of cholUpdateDelBlock, the indices to be removed is specified by the start index
del.start and the end index del.end. For example, del.start = 2 and del.end = 6
corresponds to removal of rows and columns pertaining to the indices {2, 3, 4, 5, 6}.

R> start_ind <- 2
R> end_ind <- 6
R> del_ind <- c(start_ind:end_ind)
R> A2 <- A[-del_ind, -del_ind]
R> cholA5 <- t(chol(A2))
R> cholA6 <- cholUpdateDelBlock(cholA, del.start = start_ind,
+ del.end = end_ind, lower = F)
R> print(max(abs(cholA5 - cholA6)) < tol)

TRUE

Affiliation:
Soumyakanti Pan
Department of Biostatistics
University of California Los Angeles
650 Charles E. Young Drive South
Los Angeles, CA 90095-1772
E-mail: span18@ucla.edu
URL: https://span-18.github.io/

Sudipto Banerjee
Professor of Biostatistics and
Professor of Statistics & Data Science
University of California Los Angeles
650 Charles E. Young Drive South
Los Angeles, CA 90095-1772
E-mail: sudipto@ucla.edu
URL: http://sudipto.bol.ucla.edu/

mailto:span18@ucla.edu
https://span-18.github.io/
mailto:sudipto@ucla.edu
http://sudipto.bol.ucla.edu/

	Introduction
	Bayesian spatial regression models
	Conjugate Bayesian Gaussian spatial model
	Sampling from the posterior distribution
	Spatial prediction

	Conjugate Bayesian non-Gaussian spatial model
	Sampling from the posterior distribution
	Spatial prediction

	Predictive stacking
	Stacking algorithm
	Leave-one-out predictive densities
	Exact leave-one-out predictive densities
	K-fold cross validation
	Pareto-smoothed importance sampling

	Computational workflow
	Illustrations
	Gaussian spatial regression
	Non-Gaussian spatial regression
	Analysis of spatial poisson counts
	Analysis of spatial binomial counts
	Analysis of spatial binary data

	Summary and future directions
	Conjugate priors for exponential family
	The Diaconis-Ylvisaker distribution
	The (Generalized) Conjugate Multivariate distribution

	Examples of Cholesky algorithms

