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Abstract. Air pollution remains a major environmental risk factor that is often associated with

adverse health outcomes. However, quantifying and evaluating its effects on human health is chal-

lenging due to the complex nature of exposure data. Recent technological advances have led to the

collection of various indicators of air pollution at increasingly high spatial-temporal resolutions (e.g.,

daily averages of pollutant levels at spatial locations referenced by latitude-longitude). However,

health outcomes are typically aggregated over several spatial-temporal coordinates (e.g., annual

prevalence for a county) to comply with survey regulations. This article develops a Bayesian hier-

archical model to analyze such spatially-temporally misaligned exposure and health outcome data.

We introduce Bayesian predictive stacking, which optimally combines multiple predictive spatial-

temporal models and avoids iterative estimation algorithms such as Markov chain Monte Carlo that

struggle due to convergence issues inflicted by the presence of weakly identified parameters. We

apply our proposed method to study the effects of ozone on asthma in the state of California.

Keywords. change of support, modular inference, model combination, weak identifiability

1. Introduction

Spatial and temporal misalignment refers to the setting in which different variables are observed

over incompatible spatial supports and/or at asynchronous time points or intervals. To be more

specific, spatial misalignment arises when variables are measured at different spatial resolutions,

i.e., different sets of locations or areas. For example, a variable might be observed at points (e.g. air

quality monitoring stations), which we call point-referenced data, while another is aggregated over

administrative units (e.g., counties or census tracts), which we call block data. Similarly, temporal

misalignment occurs when variables are recorded on different time scales.

In this article, we devise a Bayesian hierarchical modeling framework to study the effects of

ozone on asthma-related health emergencies among California residents. Several studies collectively

underscore the significant impact of exposure to ozone on asthma-related emergency department

visits (for e.g., Gharibi et al., 2019; Nassikas et al., 2020). We obtain data on the monthly average

concentration of ozone in California measured by air quality monitoring stations located at different

locations throughout the state. Thus, the ozone measurements are spatially point-referenced and

temporally aggregated at a monthly scale. However, data on asthma-related emergency department

E-mail address: span18@ucla.edu, sudipto@ucla.edu.

Date: May 30, 2025.

1



visits among Californian residents are reported at the county level and aggregated annually. We

refer to such disparity in both spatial and temporal resolutions as spatial-temporal misalignment.

Spatially-temporally misaligned data presents significant challenges for coherent modeling, pre-

diction, and inference. This problem is well known as the change of support and modifiable areal

unit problem (Cressie, 1996; Mugglin et al., 2000; Gelfand et al., 2001; Gotway and and, 2002).

Most of the literature focuses on estimating variables at unobserved spatial resolutions or integrat-

ing data across varying spatial scales (Banerjee et al., 2014; Zhong and Moraga, 2023). However,

efforts to estimate the association between an outcome of interest and a spatially temporally mis-

aligned covariate remain rather limited (Zhu et al., 2003; Cameletti et al., 2019), with existing

approaches typically overlooking temporal misalignment. Moreover, a key challenge in analyzing

spatial-temporal exposure data is missing observations resulting from intermittent monitoring or

data removal due to quality issues such as sensor failures. Traditional approaches often use im-

putation methods that aim to reconstruct the complete data set (for e.g., Zhu et al., 2003; Quick

et al., 2013). Our approach forgoes imputation and works directly with the available irregularly

spaced data to produce a more robust framework for spatial-temporal analysis.

We contribute in two novel aspects. First, we propose a modular Bayesian inference frame-

work (Bayarri et al., 2009; Jacob et al., 2017) that regresses an outcome on a spatially-temporally

misaligned covariate, based on noisy observations of the latter, ensuring fully model-based prop-

agation of inferential uncertainty. Second, we develop predictive stacking for estimation of such

models that analyze spatially-temporally misaligned data, thus representing a methodological ad-

vancement over previous work that included spatial Gaussian data (Zhang et al., 2024; Wakayama

and Banerjee, 2024; Presicce and Banerjee, 2025), and spatial-temporal non-Gaussian data (Pan

et al., 2025). Stacking (Wolpert, 1992; Breiman, 1996; Clyde and Iversen, 2013) is conspicuous in

machine learning as an effective alternative (Le and Clarke, 2017; Yao et al., 2018) to traditional

Bayesian model averaging (Madigan et al., 1996; Hoeting et al., 1999). The underlying idea in

predictive stacking is to optimally assimilate posterior distributions on a grid of candidate values

corresponding to intractable and weakly identified hyperparameters, such as the spatial-temporal

decay, smoothness, and the noise-to-spatial-temporal variance ratio (Zhang, 2004; Zhang and Zim-

merman, 2005; Tang et al., 2021), which impede the convergence of iterative algorithms such as

Markov chain Monte Carlo (MCMC). Stacking also differs from quadrature-based approaches, such

as INLA (Rue et al., 2009), in that we avoid approximating the posterior distribution of weakly

identified parameters. Instead, we average, or “stack” individual posterior distributions, using

weights obtained by optimizing a proper scoring rule (Gneiting and Raftery, 2007).

The remainder of the manuscript is structured as follows. Section 2 describes the data set that

motivates our methodology. Section 3 introduces our Bayesian hierarchical model for analyzing the

spatially-temporally misaligned data and states model assumptions that are critical for posterior

inference. Section 4 develops predictive stacking and focuses on developing a computationally

efficient algorithm for model estimation. Section 6 describes the detailed analysis of our data set,

while Section 7 concludes with a brief discussion.
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Figure 1. Biennial average asthma-related emergency department visit rates (per

10,000) by racial group for each California county from 2015 through 2022. For

visualization, rates are averaged over consecutive 2-year periods.

2. Data

The data set on adverse health outcomes comprises annual county-level rates of visits to the

emergency department (ED) related to asthma per 10,000 residents of California. These data are

obtained from the California Department of Public Health (CDPH) and are derived from the De-

partment of Health Care Access and Information’s Emergency Department database, which includes

records from all licensed hospitals in the state (California Breathing Asthma Program, 2024). We

analyze data consisting of age-adjusted rates stratified by race/ethnicity (white, black, Hispanic,

Asian/Pacific Islander, American Indian/Alaskan Native), derived from annual aggregated counts

of asthma-related ED visits from 2015 to 2022 for each of the 58 counties in California. ED visit

counts are based only on primary discharge diagnosis codes. The database omits rates based on

(1) counts < 12 due to statistical instability, and (2) counts ≤ 5 according to the CalHHS Data

De-identification Guidelines. This results in approximately 35% missing data that mainly affect the
3



32°N

34°N

36°N

38°N

40°N

42°N

124°W 121°W 118°W 115°W
Longitude

La
tit

ud
e County

 boundary

Ozone
 monitoring

 sites

Figure 2. County boundaries of California and the geographic locations of 200

ozone monitoring sites active from 2015 to 2022.

Asian/Pacific Islander and American Indian/Alaskan Native groups. Figure 1 maps the aggregated

two-year rates of asthma-related emergency department visits observed for each county in Califor-

nia during 2015-2022, revealing a clear pattern of racial disparity, with some counties consistently

showing high rates. The age-adjusted rates are highly positive skewed, ranging from 0 to 560.9 per

10,000 residents, with the majority between 15 and 60 (see Figure A3 in the Appendix). Hence

we analyze log-transformed rates, as they are more amenable to Gaussian assumptions, that yields

analytically tractable posteriors, enabling inference without iterative algorithms.

For exposure data, we extracted hourly measurements of ozone concentration (in parts per mil-

lion) from the California Air Quality and Meteorological Information System (AQMIS) database of

the California Air Resources Board for the years 2015-2022. These data were recorded from about

200 air quality monitoring sites in California that were active during this time period. Figure 2

maps the geographic locations of these monitoring sites located in the county boundaries of Cal-

ifornia, highlighting the heterogeneous spatial distribution of air quality surveillance in counties.

The figure also reveals a clear regional clustering of sites near urban and coastal areas in central

and southern California, with notable sparsity in the eastern rural inland regions of the state. For

our analysis, we aggregate the hourly data into monthly average ozone concentrations. Due to the

fact that not all monitoring sites were active throughout the study period and many have missing

monthly records, the resulting data set is temporally unbalanced between sites. In total, the data

set comprises measurements of ozone concentrations at 15,725 unique spatial-temporal locations,

where the temporal component is referenced by monthly intervals rather than exact timestamps.

Figure 3 features interpolated spatial surfaces of annual average ozone concentration between 2015
4
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Figure 3. Interpolated spatial surface of annual (summed over months) ozone con-

centration (in parts per million) for California from 2015 to 2022. The geographic

coordinates of the air quality monitoring stations are marked by black circles.

and 2022, showing a clear spatial pattern, with the sparsely sampled eastern inland regions record-

ing higher ozone concentrations, demonstrating spatial imbalances in monitoring coverage.

3. Bayesian spatial-temporal hierarchical model

3.1. Multi-resolution spatial-temporal process. We consider a spatial-temporal process as an

uncountable set of random variables, say {Z(ℓ) : ℓ ∈ D}, which is endowed with a probability law

specifying the joint distribution for any finite sample of locations in D = S × T , where S ⊂ R2

and T ⊂ [0,∞) are space and time domains, respectively, and ℓ = (s, t) is a spacetime coordinate

with s ∈ S and t ∈ T (see, e.g., Gneiting and Guttorp, 2010). Subsequently, we define two new

types of space-time coordinates ℓ̃ = (s̃, Ĩ) and L = (B, I), where s̃ ∈ S, B ⊂ S denotes a block or a

region within S, and I, Ĩ ⊂ T denote intervals in T . We extend the spatial-temporal process Z(ℓ)

to these new coordinate systems as {Z(ℓ̃) : ℓ̃ ∈ S ×B(T )} and {Z(L) : L ∈ B(S × T )}, where for

any set A, B(A) denotes the collection of Borel-measurable subsets of A (Billingsley, 1995), and

Z(ℓ̃) = Z(s̃, Ĩ) = |Ĩ|−1

∫
Ĩ
Z(s̃, t)dt , Z(L) = Z(B, I) = (|B||I|)−1

∫
I

∫
B
Z(s, t)dsdt , (1)

where |B| =
∫
B 1ds denotes the area of B, and |I| =

∫
I 1dt, |Ĩ| =

∫
Ĩ 1dt denote the lengths of the

intervals I and Ĩ, respectively. This implies that the random variable Z(ℓ̃) denotes a realization of

the stochastic process obtained by a temporal averaging of Z(ℓ) over the interval Ĩ at location s̃.

In our context, this corresponds to the monthly average concentration of ozone at the location s̃,
5



averaged over the month Ĩ. Similarly, Z(L) is a realization from the stochastic process obtained by

averaging Z(ℓ) over a spatial-temporal block L, which includes averaging spatially over the region

B and averaging temporally over the interval I. This may represent ozone concentrations in the

county defined by the spatial block B, averaged over the annual interval I.

A stationary Gaussian process specification for Z(ℓ) enables us to analytically derive a joint

distribution for the spatial-temporal process at each resolution. To be specific, suppose Z(ℓ) is a

Gaussian process with mean function µ(ℓ; γ) and covariance function σ2C(ℓ, ℓ′;ϕ), where µ(·; γ)
denotes a trend surface with coefficient vector γ, σ2 denotes the spatial-temporal variance, and

ϕ denotes a generic parameter vector characterizing spatial-temporal decay or smoothness. We

collectively call ϕ as “process parameters”. For any given spatial-temporal coordinates {ℓ̃j =

(s̃j , Ĩj) : j = 1, . . . , N} and {Lk = (Bk, Ik) : k = 1, . . . ,K}, define the N × 1 vector Zℓ̃ =

(Z(ℓ̃1), . . . , Z(ℓ̃N ))⊤, and the K × 1 vector ZL = (Z(L1), . . . , Z(LK))⊤. Then, we have

p

((
Zℓ̃

ZL

)∣∣∣∣∣ γ, σ2, ϕ
)

= N

((
Zℓ̃

ZL

)∣∣∣∣∣
(
µℓ̃(γ)

µL(γ)

)
, σ2

[
Cℓ̃(ϕ) Cℓ̃,L(ϕ)

Cℓ̃,L(ϕ)
⊤ CL(ϕ)

])
, (2)

where

(µℓ̃(γ))j = |Ĩj |
−1

∫
Ĩj

µ((s̃j , t); γ)dt, (µL(γ))k = (|Ik||Bk|)−1

∫
Lk

µ(ℓ; γ)dℓ ,

(Cℓ̃(ϕ))j,j′ = (|Ĩj ||Ĩj′ |)−1

∫
Ĩj′

∫
Ĩj

C((s̃j , t), (s̃j′ , t
′);ϕ)dtdt′ ,

(Cℓ̃,L(ϕ))j,k = (|Ĩj ||Ik||Bk|)−1

∫
Ĩj

∫
Ik

∫
Bk

C((s̃j , t
′), (s, t);ϕ)dsdtdt′ ,

(CL(ϕ))k,k′ = (|Lk′ ||Lk|)−1

∫
Lk′

∫
Lk

C(ℓ, ℓ′;ϕ)dℓdℓ′ ,

(3)

for j, j′ = 1, . . . , N , and k, k′ = 1, . . . ,K, and |Lk| = |Bk||Ik| for each k. The joint distribution

(2) provides a unified framework that connects the process across the two spatial-temporal reso-

lutions, enabling tractable posterior predictive inference at spatial-temporal blocks Lk for each k,

conditional on observed realizations at point-referenced temporal blocks ℓ̃j , j = 1, . . . , N .

3.2. Conjugate Bayesian hierarchical model. Let L = {Lk : k = 1, . . . ,K} be a fixed set of

K spatial-temporal blocks in B(S × T ), where Lk is of the form (Bk, Ik) with Bk being a block

or region in S and Ik an interval in T , for each k. Let Y (L) = (Y (L1), . . . , Y (Lk))
⊤, which we

simply denote by Y , be the K × 1 vector of outcomes observed at L. The key challenge of our

model is that we do not observe the covariates that are assumed to explain the outcome at the

same spatial-temporal resolution at which Y is observed. Suppose L̃ = {ℓ̃j : j = 1, . . . , N}, where
ℓ̃j is of the form (s̃j , Ĩj) for each j, be the N spatial-temporal coordinates in S ×B(T ), at which
we observe the covariate X(L̃) = (X(ℓ̃1), . . . , X(ℓ̃N ))⊤, which we simply write as the N × 1 vector

X. We further assume that X(L̃) are noisy measurements of a latent spatial-temporal process

on S ×B(T ) derived from a parent process Z(ℓ) on D following the stochastic integral (1). This

setup is particularly motivated by the asthma and ozone datasets described in Section 2, where the
6



outcome is measured at the county level and aggregated annually, while the covariate is spatially

referenced to points, but aggregated on a monthly scale.

We build a hierarchical model by jointly modeling both the outcome and the covariate as condi-

tionally dependent on a shared latent spatial-temporal process,

Y (Lk) = w(Lk)
⊤β1 + β2Z(Lk) + ϵk, ϵk

ind∼ N
(
0, (|Bk||Ik|)−1τ2

)
, k = 1, . . . ,K ,

(β⊤1 , β2)
⊤ | τ2 ∼ N(µβ, τ

2Vβ), τ2 ∼ IG(aτ , bτ ) ,

X(ℓ̃j) = Z(ℓ̃j) + ej , ej
ind∼ N(0, |Ĩj |−1δ2σ2), j = 1, . . . , N ,

Z(ℓ) | γ, σ2, ϕ ∼ GP(µ(ℓ; γ), σ2C(·, ·;ϕ)), µ(ℓ; γ) = ψ(ℓ)⊤γ ,

γ | σ2 ∼ N(µγ , σ
2Vγ), σ2 ∼ IG(aσ, bσ) ,

(4)

where w(Lk) = (w1(Lk), . . . , wp(Lk))
⊤ denotes a p× 1 vector of predictors, β1 is the corresponding

p×1 vector of fixed effects, and, β2 is a scalar and denotes the slope corresponding to the covariate

Z(Lk), which denotes the latent spatial-temporal process at Lk, for each k. Instead of Z(LK), we

observe X(ℓ̃j), which are noisy observations of Z(ℓ̃j), which denotes the latent process at a different

spatial-temporal resolution from Z(Lk). Note that both Z(Lk) for each k, and Z(ℓ̃j) for each j, are

completely unobserved, and their joint probability law is specified by the assumption of a Gaussian

process (GP) Z(ℓ) on D, following (2). The mean function of the GP is characterized by a r×1 basis

ψ(ℓ) = (ψ1(ℓ), . . . , ψr(ℓ))
⊤, and its corresponding r × 1 slope vector γ. The purpose of ψ(ℓ) is to

model a global trend of the spatial-temporal process which may capture an overall mean, seasonal

variations, and so on. The term ϵk denotes white noise defined only at the coordinates in L, and
captures the heteroskedasticity arising from inhomogeneity in the volumes of the spatial-temporal

blocks at which the outcome is observed. Similarly, ej captures the independent measurement error

for X(ℓ̃j) for each j, and are defined only at L̃. It is crucial to note that, unlike Z(·), ϵj and ek are

two different white noise processes and do not originate from a parent white noise process on D.
Here, δ2 is the noise-to-spatial-temporal variance ratio.

Let W be the K × p matrix with (k, u)-th element wk(Lu) for k = 1, . . . ,K and u = 1, . . . , p.

Collect the regression coefficients into the (p + 1) × 1 vector β = (β⊤1 , β2)
⊤. Given τ2, we place

a multivariate Gaussian prior N(µβ, τ
2Vβ) on β, and subsequently place an inverse-gamma prior

IG(aτ , bτ ) on τ2. Similarly, we also place a multivariate Gaussian prior N(µγ , σ
2Vγ) on γ con-

ditional on σ2, and then place an inverse-gamma prior IG(aσ, bσ) on σ2. Define K × 1 vector

ZL = (Z(L1), . . . , Z(LK))⊤, and N × 1 vector Zℓ̃ = (Z(ℓ̃1), . . . , Z(ℓ̃N ))⊤. Hence, we write the joint

distribution of the data, latent process and the model parameters p(Y,X,ZL, Zℓ̃, β, γ, τ
2, σ2) as

N(Y |Wβ1 + β2ZL, τ
2DL)× N(β | µβ, τ2Vβ)× IG(τ2 | aτ , bτ )

× N(X | Zℓ̃, δ
2σ2Dℓ̃)× N(Zℓ̃ | Ψ̃γ, σ

2Cℓ̃(ϕ))× N(ZL | µL|ℓ̃, σ
2CL|ℓ̃)

× N(γ | µγ , σ2Vγ)× IG(σ2 | aσ, bσ) ,

(5)

where DL is K ×K diagonal matrix with the kth diagonal element (|Bk||Ik|)−1 for each k, and Dℓ̃

is N ×N diagonal matrix with the jth diagonal element |Ĩj |−1 for each j. Following (2), we have

µL|ℓ̃ = Ψ̄γ + Cℓ̃,L(ϕ)
⊤C−1

ℓ̃
(ϕ)
(
Zℓ̃ − Ψ̃γ

)
and CL|ℓ̃ = CL(ϕ)− Cℓ̃,L(ϕ)

⊤Cℓ̃(ϕ)
−1Cℓ̃,L(ϕ) , (6)
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where N×N matrix Cℓ̃(ϕ) and N×K matrix Cℓ̃,L(ϕ) are as defined in (3). Furthermore, the N×r
basis matrix Ψ̃ is known and has (j, v)-th element ψ̃v(ℓ̃j) = |Ĩj |−1

∫
Ĩj
ψv(s, t)dt for v = 1, . . . , r

and j = 1, . . . , N . Similarly, the K × r basis matrix Ψ̄ is known, with (k, v)-th element ψ̄v(Lk) =

(|Lk|)−1
∫
Lk
ψ(ℓ)dℓ for k = 1, . . . ,K and v = 1, . . . , r. Equation 5 factorizes the joint distribution

in a way that reflects the hierarchical structure of the data-generative model, as given by (4).

3.3. Model assumptions. We pursue analytically accessible posterior distribution of all model

parameters in (4) conditional on ϕ and δ2. The auxiliary model hyperparameters µβ, Vβ, µγ , Vγ ,

aτ , bτ , aσ and bσ are assumed fixed. Following (5), since β and τ2 are conditionally independent of

all model components, given (Y,ZL), we factorize the posterior distribution as

p(ZL, Zℓ̃, β, γ, τ
2, σ2 | Y,X, ϕ, δ2) = p(β, σ2 | ZL, Y )× p(ZL, Zℓ̃, γ, σ

2 | Y,X, ϕ, δ2) (7)

We make one additional assumption on p(ZL, Zℓ̃, γ, σ
2 | Y,X, ϕ, δ2) as follows.

Assumption 1. Under fixed values of ϕ and δ2, the latent spatial-temporal processes (ZL, Zℓ̃) is

conditionally independent of the outcome Y , given noisy measurements of the covariate X, i.e.,

p(ZL, Zℓ̃, γ, σ
2 | Y,X, ϕ, δ2) = p(ZL, Zℓ̃, γ, σ

2 | X,ϕ, δ2).

This implies that, instead of estimating a Bayesian full probability model, we assume that the

latent spatial-temporal processes (ZL, Zℓ̃) are a priori dependent, but onceX is observed, Y provides

no additional information about them. In the context of our analysis, Assumption 1 appears

quite natural since it dictates that the estimation of annual county-level ozone concentrations only

depends on X, i.e., the monthly ozone levels measured by the monitoring stations, and does not

depend on asthma ED visit rates Y . In the literature of Bayesian inference for complex hierarchical

models, this is a familiar approach, especially when there are multiple data sources that provide

information about different parameters in the model (see, for e.g., Bayarri et al., 2009; Jacob

et al., 2017). This is commonly known as modularization, as Assumption 1 modulates the flow

of information from observed data to the latent process. Moreover, our proposed framework can

also be viewed as a cut model (Plummer, 2014), since it mimics a cut in the directed acyclic

graph representing the hierarchical model, separating the graph into two components by logically

preventing the “feedback” from one part of the model to the other during inference. We illustrate

this in Figure 4. The separate components of the model are often called modules. In this context,

the hierarchical model (4) is made up of two modules – a linear regression module (Module 1), and

a spatial-temporal regression module (Module 2). In a full probability model, the information from

the outcome Y “feeds back” through the graph in Figure 4 to influence the posterior distribution

of the latent spatial-temporal processes (ZL, Zℓ̃). Instead, both ZL and Zℓ̃ are estimated using

the auxiliary data X. Cut models are also attractive from a computational viewpoint, as they

significantly simplify sampling from the posterior distribution.

3.4. Posterior distribution. Following Assumption 1, conditional on ϕ and δ2, we derive that

the posterior distribution corresponding to the hierarchical model in (4) as

N(β |Mβmβ, τ
2Mβ)× IG(τ2 | a∗τ , b∗τ )× N(ZL | µL|ℓ̃, σ

2CL|ℓ̃)

× N(Zℓ̃ |Mzmz, σ
2Mz)× N(γ |Mγmγ , σ

2Mγ)× IG(σ2 | a∗σ, b∗σ) ,
(8)
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Figure 4. Directed acyclic graph (DAG) illustrating the conditional dependence

structure of the hierarchical model (4). Nodes shaded in gray correspond to data that

are observed; all other nodes represent unobserved (latent or unknown) quantities.

The vertical dashed line denotes a “cut” in the DAG, indicating restricted flow of

information from Y to Module 2 during posterior inference.

where a∗τ = aτ + K/2, b∗τ = bτ + (Y ⊤D−1
L Y + µ⊤β V

−1
β µβ − m⊤

βMβmβ)/2, and a∗σ = aσ + N/2,

b∗σ = bσ + (X⊤V −1
X X + µ⊤γ V

−1
γ µγ −m⊤

γMγmγ)/2, with VX = Cℓ̃(ϕ) + δ2Dℓ̃, and

M−1
β = W̃⊤D−1

L W̃ + V −1
β , mβ = W̃⊤D−1

L Y + V −1
β µβ ,

M−1
γ = Ψ̃⊤V −1

X Ψ̃ + V −1
γ , mγ = Ψ̃⊤V −1

X X + V −1
γ µγ ,

M−1
z = Cℓ̃(ϕ)

−1 + (1/δ2)D−1

ℓ̃
, mz = (X − Ψ̃γ)/δ2 ,

(9)

where W̃ = [W,ZL] being the K × (p+ 1) matrix obtained by augmenting W by the vector ZL on

the right. The first two terms in (8) denote the conditional posterior distributions p(β | τ2, ZL, Y )

and p(τ2 | ZL, Y ), respectively. The third term denote the posterior predictive distribution p(ZL |
Zℓ̃, γ, σ

2, ϕ, δ2), with µL|ℓ̃ and CL|ℓ̃ as defined in (6). The fourth through sixth terms represent

the conditional posterior distributions p(Zℓ̃ | γ, σ
2, X, ϕ, δ2), p(γ | σ2, X, ϕ, δ2), and the marginal

posterior distribution p(σ2 | X,ϕ, δ2), respectively. This factorization follows from the fact that ZL

is conditionally independent of the data X, given Zℓ̃, γ, σ
2 and ϕ. It is important to remark that,

the analytical tractability of the posterior distribution arises from the assumption that ϕ and δ2

are fixed and due to the condition specified in Assumption 1.

We use composition sampling to draw samples from the posterior distribution in (8). We elab-

orate the steps in Algorithm 1. Here, chol(·) refers to the lower-triangular Cholesky factor of a

square matrix.The steps in Algorithm 1, generate B samples {σ2(b), γ(b), Z(b)

ℓ̃
, Z

(b)
L , τ2(b), β(b)}Bb=1

from the posterior distribution. The sampling algorithm is dominated by Cholesky decompositions

of N ×N matrices VX , Mz, and Cℓ̃(ϕ), which accumulates O(N3) floating-point operations (flops).

The matrix Mz is calculated efficiently using the identity Mz = δ2Dℓ̃V
−1
X Cℓ̃(ϕ), where V

−1
X Cℓ̃(ϕ) is

calculated using triangular solves of columns of Cℓ̃(ϕ) with respect to the Cholesky factor already

calculated chol(VX). Placing a prior on ϕ and the nugget θ = δ2σ2 requires iterative algorithms such

as MCMC to sample from the posterior distribution, which entails repeated Cholesky decomposi-

tions of these N ×N matrices. Moreover, weak identifiability of ϕ, σ2 and θ impedes convergence
9



Algorithm 1: Posterior Sampling

Input: Data: (Y,X, L̃,L); candidate (ϕ, δ2), and hyperparameters.

Output: Posterior samples of {σ2(b), γ(b), Z(b)

ℓ̃
, Z

(b)
L , τ2(b), β(b)}Bb=1

Compute chol(VX) given ϕ, δ2; // O(N3) flops

Compute chol(Mz) using chol(VX), and Mz = δ2Dℓ̃V
−1
X Cℓ̃(ϕ); // O(N3) flops

Compute chol(Cℓ̃(ϕ)), then chol(CL|ℓ̃) using (6); // O(KN2 +K3) flops

Compute Mγ , mγ , then a
∗
σ, b

∗
σ; // O(rN2 + r3) flops

for b← 1 to B do

Sample σ2(b) ∼ IG(a∗σ, b
∗
σ);

Sample γ(b) ∼ N(Mγmγ , σ
2(b)Mγ);

Compute m
(b)
z = (X − Ψ̃γ(b))/δ2; // O(N) flops

Sample Z
(b)

ℓ̃
∼ N(Mzm

(b)
z , σ2(b)Mz) using chol(Mz); // O(N2) flops

Compute µ
(b)

L|ℓ̃ using Z
(b)

ℓ̃
and γ(b) in (6); // O(KN2) flops

Sample Z
(b)
L ∼ N(µ

(b)

L|ℓ̃, σ
2(b)CL|ℓ̃); // O(N) flops

Set W̃ (b) = [W,Z
(b)
L ], compute M

(b)
β , m

(b)
β , a

∗(b)
τ , b

∗(b)
τ using (9); // O(K3) flops

Sample τ2(b) ∼ IG(a
∗(b)
τ , b

∗(b)
τ );

Sample β(b) ∼ N(M
(b)
β m

(b)
β , τ2(b)M

(b)
β );

return B samples {σ2(b), γ(b), Z(b)

ℓ̃
, Z

(b)
L , τ2(b), β(b)}Bb=1 from the posterior distribution (8).

of the random walk Metropolis steps, which contributes to delayed execution times. Thus, even for

moderately sized datasets (N ∼ 103), the computation becomes too onerous for practical use and

alternative strategies like low-rank models are used (Finley et al., 2015). In this context, predictive

stacking presents itself as an effective alternative by enhancing the practicality of full Gaussian

process models for moderately large datasets.

Remark 1. Given observations at L̃, let L = {ℓi = (si, ti) : i = 1, . . . , N∗} be a collection of

N∗ space-time coordinates in D, where we wish to predict latent spatial-temporal process. Define

N∗ × 1 vector Zℓ = (Z(ℓ1), . . . , Z(ℓN∗))⊤. Then, posterior predictive inference at L follows from

p(Zℓ | X,ϕ, δ2) =
∫
p(Zℓ | Zℓ̃, γ, σ

2, ϕ, δ2) p(Zℓ̃, γ, σ
2 | X,ϕ, δ2) dZℓ̃ dγ dσ

2 , (10)

where the conditional density p(Zℓ | Zℓ̃, γ, σ
2, ϕ, δ2) = N(Zℓ | µℓ|ℓ̃, σ

2Cℓ|ℓ̃), with

µℓ|ℓ̃ = Ψγ + Cℓ,ℓ̃(ϕ)C
−1

ℓ̃
(ϕ)
(
Zℓ̃ − Ψ̃γ

)
, Cℓ|ℓ̃ = Cℓ(ϕ)− Cℓ,ℓ̃(ϕ)Cℓ̃(ϕ)

−1Cℓ,ℓ̃(ϕ)
⊤ , (11)

where (µℓ(γ))i = µ(ℓi; γ), and N
∗ ×N matrix Cℓ,ℓ̃(ϕ), and N

∗ ×N∗ matrix Cℓ(ϕ) are defined as

(Cℓ(ϕ))i,i′ = C(ℓi, ℓi′ ;ϕ), (Cℓ,ℓ̃(ϕ))i,j = |Ĩj |
−1

∫
Ĩj

C((si, ti), (s̃j , t);ϕ)dt ,

for i, i′ = 1, . . . , N∗ and j = 1, . . . , N . We sample from (10) by first drawing {Z(b)

ℓ̃
, γ(b), σ2(b)} from

p(Zℓ̃, γ, σ
2 | X,ϕ, δ2) using Algorithm 1. Then, for each drawn value of {Z(b)

ℓ̃
, γ(b), σ2(b)}, we sample

10



Zℓ from N(Zℓ | µ
(b)

ℓ|ℓ̃ , σ
2(b)Cℓ|ℓ̃), where µ

(b)

ℓ|ℓ̃ is obtained by substituting Zℓ̃ and γ by Z
(b)

ℓ̃
and γ(b),

respectively, in (11). Repeating this for b = 1, . . . , B yields samples {Z(b)
ℓ : b = 1, . . . , B} from (10).

3.5. Spatial-temporal correlation function. As can be seen from (3), evaluation of the elements

of Cℓ̃(ϕ) involves numerical integrations over the temporal domain. Popular methods for univariate

numerical integration (e.g., trapezoidal/Simpson’s rule, quadrature, Monte Carlo) for a smooth

function incurs O(M) operations, where M denotes the number of knots/points at which the

integrand is evaluated. Hence, evaluation of all elements of Cℓ̃(ϕ) would require O(MN2) flops,

which can be computationally expensive for moderately large N . Therefore, we explore spatial-

temporal correlation functions that offer improved tractability, especially over the temporal domain.

In particular, we assume a separable spatial-temporal correlation function (Mardia and Goodall,

1993) of the form C(ℓ, ℓ′;ϕ) = Cs(s, s
′;ϕs, ν) · Ct(t, t

′;ϕt), where Cs(s, s
′;ϕs, ν) and Ct(t, t

′;ϕt)

denote the isotropic Matérn and the exponential correlation functions, respectively, given by

Cs(s, s
′;ϕs, ν) =

(ϕs∥s− s′∥)ν

2ν−1Γ(ν)
Kν

(
ϕs∥s− s′∥

)
,

Ct(t, t
′;ϕt) = exp(−ϕt|t− t′|) ,

(12)

where ∥s − s′∥ is the Euclidean distance between s, s′ ∈ S. The function Γ(·) denotes the gamma

function, and Kν is the modified Bessel function of the second kind of order ν which may be frac-

tional (Abramowitz and Stegun, 1965, Chapter 10). Hence, in this case, the process parameter

ϕ = (ϕs, ν, ϕt) is a 3-dimensional parameter. The assumption of this multiplicative form con-

veniently separates space and time in calculation of covariance matrices Cℓ̃(ϕ), CL(ϕ), and the

cross-covariance matrix Cℓ̃,L(ϕ). For example, the elements of Cℓ̃(ϕ) can be rewritten as

(Cℓ̃(ϕ))j,j′ = (|Ĩj ||Ĩj′ |)−1Cs(s̃j , s̃j′ ;ϕs, ν)

∫
Ĩj′

∫
Ĩj

Ct(t, t
′;ϕt)dtdt

′ . (13)

We make an additional assumption that facilitates closed form expression for the integral in (13).

Assumption 2. The temporal blocks Ĩj for j = 1, . . . , N and Ik for k = 1, . . . ,K, are of the form

Ĩj = (ãj , b̃j), and Ik = (ak, bk) where ãj < b̃j for each j and ak < bk for each k.

The distribution theory in Section 3.1 applies to any Borel-measurable subsets Ĩj and Ik. In

practice, however, it is natural to assume that observations are aggregated over a single interval.

Proposition 1. For any a < b and c < d, suppose C̃t(a, b, c, d;ϕ) =
∫ d
c

∫ b
a Ct(t, t

′;ϕt)dtdt
′, then

(a) for non-overlapping (a, b) and (c, d), with a < b ≤ c < d,

C̃t(a, b, c, d;ϕt) =
1

ϕ2t
[F (a, d) + F (b, c)− F (a, c)− F (b, d)] ,

(b) if intervals (a, b) and (c, d) overlap, with a ≤ c < b ≤ d,

C̃t(a, b, c, d;ϕt) =
1

ϕ2t
[2ϕt(b− c) + F (a, d) + F (c, b)− F (a, c)− F (b, d)] ,

(c) if (a, b) is nested within (c, d), i.e. either c ≤ a < b < d or c < a < b ≤ d,

C̃t(a, b, c, d;ϕt) =
1

ϕ2t
[2ϕt(b− a) + F (a, d) + F (c, b)− F (c, a)− F (b, d)] ,

11



where F (a1, a2) = F (a1, a2;ϕt) = exp (−ϕt(a2 − a1)) for any a1, a2 ∈ T .

Proof. See Appendix C for details. □

We benefit from the customary Assumption 2 that the integral of Ct(·, ·;ϕt) as appearing in (13)

admits closed-form expressions, as detailed in Proposition 1. This facilitates a rapid evaluation of

elements of the spatial-temporal covariance matrix Cℓ̃(ϕ) without resorting to approximations using

numerical methods. However, Proposition 1 does not extend to similar results for integrations over

irregular spatial blocks (e.g., counties of California), and hence numerical methods are essential for

computing elements of CL(ϕ) and Cℓ̃,L(ϕ). In this context, assuming the separable spatial-temporal

covariance function (12) provides additional advantage, as we are able to write the integral as a

product of a spatial and a temporal component. Following (3) and Assumption 2, we have

(Cℓ̃,L(ϕ))j,k =
|Bk|−1

(b̃j − ãj)(bk − ak)
C̃t(ãj , b̃j , ak, bk)

∫
Bk

Cs(s̃j , s)ds ,

(CL(ϕ))k,k′ =
(|Bk||Bk′ |)−1

(bk − ak)(bk′ − ak′)
C̃t(ak, bk, ak′ , bk′)

∫
Bk′

∫
Bk

Cs(s, s
′)dsds′ ,

(14)

for each j = 1, . . . , N and k, k′ = 1, . . . ,K. The role of Proposition 1 becomes clear from (14), as

it helps to simplify (3) by reducing the necessity of any numerical integration in the time domain.

From a computational perspective, due to Proposition 1, evaluation of Cℓ̃(ϕ) requires absolutely no

numerical integration, Cℓ̃,L(ϕ) requires NK numerical integrals and CL(ϕ) requires K
2 numerical

integrals. In practice, K is generally much smaller compared to N . For example, California has

only 58 counties, and we include observations for 5 racial groups over 8 years from 2015 through

2022, which amounts to K = 1510 after removal of missing records. On the other hand, we have

recorded ozone levels at N = 15, 725 spatial-temporal coordinates.

4. Predictive stacking

4.1. Choice of candidate models. To implement stacking, we first fix the values of the hyper-

parameters of the auxiliary model. In practice, we assume µβ = 0p+1, Vβ = δ2βIp+1 for a sufficiently

large δβ to specify a weakly informative prior for the fixed effects β. Here, 0p+1 denotes the zero

vector of length p+1. Similarly, we assume µγ = 0r and Vγ = δ2γIr for the Gaussian prior on γ. For

τ2 and σ2, we choose the shape parameters aτ = aσ = 2 and the scale parameters bτ = bσ = 0.1.

For ϕ = (ϕs, ϕt, ν) and δ2, we choose grids of candidate values given by Gϕs , Gϕt , Gν and

Gδ2 . The grid Gδ2 is chosen based on the values of the nugget and partial sill, estimated from an

empirical semivariogram. Zhang et al. (2024) provides further details on how the quantiles of a

Beta distribution specified by the estimated values of the nugget and the partial sill can be used

to provide useful information for selecting Gδ2 . On the other hand, the candidate values of ϕs

and ϕt are chosen so that the “effective range” (distance at which the correlation drops below 5%)

corresponding to the candidate values is between 20% and 70% of the maximum distance between

the space-time coordinates (see, Chapter 2 Banerjee et al., 2014). We choose Gν to include some

customary values of the Matérn smoothness parameter that are often used in the literature of

spatial analysis. For example, a possible choice is Gν = {0.5, 1.0, 1.5}.
12



4.2. Stacking algorithm. While we follow the general strategy of stacking predictive densities

as proposed in Yao et al. (2018), our development is distinct in that we adapt the approach to

our more complex model structure, which differs significantly from the standard spatial-temporal

modeling frameworks considered in the previous literature (Zhang et al., 2024; Pan et al., 2025).

In this aspect, Assumption 1 plays a key role, as it restricts the inference for the latent spatial-

temporal process to Module 2, within which we seek to find an optimal way to combine the inference

conditional on candidate values of ϕ and δ2. We elaborate below.

Let M = {M1, . . . ,MG} denote a collection of candidate models G, where Mg corresponds to

fixed values of the parameters (ϕg, δ
2
g), for g = 1, . . . , G. Predictive stacking finds a probability

distribution p̃ in the class C = {
∑G

g=1 αgp(· | X,Mg) :
∑G

g=1 αg = 1, αg ≥ 0}, such that the

Kullback-Leibler (KL) divergence between p̃(· | X) and pt(· | X) is minimized, where pt denotes the

posterior predictive distribution under the true data-generating model. Here, p(· | X,Mg) denotes

the posterior predictive distribution under the candidate model Mg, for each g. We define the

stacking weights α = (α1, . . . , αG) as the solution to the optimization problem

max
α

1

N

N∑
j=1

log

G∑
g=1

αg p
(
X(ℓ̃j)

∣∣∣X−j ,Mg

)
subject to α⊤1G = 1, α ∈ [0, 1]G , (15)

where X−j denotes the data X with the jth observation removed, and p(X(ℓ̃j) | X−j ,Mg) denotes

the leave-one-out predictive density corresponding to the jth observation. This follows from a result

that establishes that minimizing KL (p̃(· | X), pt(· | X)) under the constraint p̃ ∈ C is asymptotically

equivalent to the optimization problem in (15) (see, Le and Clarke, 2017; Clyde and Iversen, 2013).

The optimization task in (15) falls into the class of convex problems and can be formulated and

solved using suitable modeling tools and solvers. Assumption 1 implies that the optimal stacking

weights can be computed solely based on Module 2, that is, using only X. Posterior inference for

quantities of interest subsequently proceeds from the “stacked posterior”,

p̃(· | X,Y ) =
G∑

g=1

α̂g p(· | X,Y,Mg) , (16)

where ŵg denotes optimal stacking weights obtained by solving the optimization task in (15).

An important prerequisite for evaluating the objective function of interest in (15) is the compu-

tation of the leave-one-out predictive densities. Under the hierarchical model (4), the leave-one-out

predictive densities admit a closed form, given by

p
(
X(ℓ̃j)

∣∣∣X−j ,Mg

)
= t2a∗σ,j

(
X(ℓ̃j)

∣∣∣µg,j|−j(ℓ̃j),
(
b∗σ,j/a

∗
σ,j

)
σg,j|−j

)
, (17)

where tρ(x;m, v
2) denotes the location-scale t-density with degrees of freedom ρ, location m and

scale v, evaluated at x, and the parameters µg,j|−j(ℓ̃j) and σg,j|−j are given by

µg,j|−j(ℓ̃j) = R⊤
g,jVg,X−jX−j +H⊤

g,jMγ,g,jmγ,g,j ,

σg,j|−j = Vg,Xj |X−j
+H⊤

g,jMγ,g,jHg,j ,

where Rg,j is the (N − 1) × 1 spatial-temporal cross-correlation matrix between L̃ \ ℓ̃j and {ℓ̃j}
under Mg, and is given by the jth column of Cℓ̃,−j(ϕg) which denotes the matrix Cℓ̃(ϕg) with both

13



its jth row and column removed. Moreover, the matrix Vg,X−j is obtained by removing the jth row

and column of Vg,X = Cℓ̃(ϕg) + δ2gDℓ̃. In addition, M−1
γ,g,j = Ψ̃⊤

−jVg,X−j Ψ̃−j + V −1
γ , and mγ,g,j =

Ψ̃−jVg,X−jX−j+V
−1
γ µγ where the (N −1)×r matrix Ψ̃−j is obtained by deleting the jth row of Ψ̃.

The r×1 vector Hg,j = ψ̃(ℓ̃j)−Ψ̃⊤
−jV

−1
g,X−j

Rg,j , and the scalar Vg,Xj |X−j
= (Vg,X)j,j−R⊤

g,jVg,X−jRg,j

with (Vg,X)j,j denoting the jth diagonal element of Vg,X . Furthermore, a∗σ,g = aσ + (N − 1)/2, and

b∗σ,g = bσ + (X⊤
−jVg,X−jX−j + µ⊤γ V

−1
γ µγ −m⊤

γ,g,jMγ,g,jmγ,g,j)/2.

Evaluation of (17) is dominated by the Cholesky decomposition of the (N − 1)× (N − 1) matrix

Vg,X−j , which requires O(N3), for each j. Hence, a naive approach to find the leave-one-out

predictive densities under eachMg results in ∼ O(N4) flops, which is impractical. We mitigate this

issue by reusing the Cholesky factor of Vg,X which has already been computed once while fitting the

model Mg (Kim et al., 2002). Subsequently, we compute the Cholesky factor of Vg,X−j for each j

using an efficient rank-one update algorithm (Krause and Igel, 2015), which ultimately accumulates

to O(N3) flops, thereby delivering a significant speedup over the naive approach.

Although rank-one updates are faster than the naive method, they are computationally expensive;

hence, an alternative approach is desirable. Here, importance weighting is an attractive option to

approximate leave-one-out predictive densities (see, for e.g., Gelfand et al., 1992; Vehtari et al.,

2024b). Suppose {Z(b)

ℓ̃,g
, σ

2(b)
g }Bb=1 denotes B draws from the posterior distribution p(Zℓ̃, σ

2 | X,Mg),

then for each j, we approximate the leave-one-out predictive densities by the weighted mean

p
(
X(ℓ̃j)

∣∣∣X−j ,Mg

)
≈ 1∑B

b=1 r
b
j,g

B∑
b=1

rbj,gN
(
X(ℓ̃j)

∣∣∣Z(b)

ℓ̃,g,j
, σ2(b)g

)
, (18)

where Z
(b)

ℓ̃,g,j
denotes the jth element of Z

(b)

ℓ̃,g
, and rbj,g is the important ratio defined as 1/rbj,g =

N(X(ℓ̃j) | Z(b)

ℓ̃,g,j
, σ

2(b)
g ). The weights rbj,g tend to have a high or infinite variance, introducing insta-

bility in the computation (18). To address these issues, Vehtari et al. (2017) proposes stabilizing

the weights by fitting a generalized Pareto distribution to the tail of the weight distribution using

the empirical Bayes estimation algorithm proposed in Zhang and Stephens (2009). Thus, no addi-

tional model fitting is necessary to calculate leave-one-out predictive densities. Compared to O(N3)

for the Cholesky factor update algorithm, the computational cost of this approximate method is

O(N logN) and therefore is much faster. Figure A5 in the Appendix compares exact and approxi-

mate leave-one-out predictive densities computed using the closed-form expression (17) and Pareto

smoothed importance sampling, respectively, for a spatial regression model. Both methods deliver

practically indistinguishable results but differ in computational cost; exact computation requires

roughly 3 minutes, whereas importance sampling needs only 0.1 second. We implement this using

the R package loo (Vehtari et al., 2024a).

5. Simulation

5.1. Simulated data. To address the analytical challenges posed by data that are simultaneously

spatially and temporally misaligned, we designed a simulation study that closely replicates the

structure and characteristics of the outcome (asthma) and the exposure (ozone) data, as discussed

in Section 2. For the exposure data, we consider the unit square, i.e., [0, 1]2, and the interval [0, 12]

as the spatial and temporal domains of interest. The interval [0, 12] represents the duration of
14
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Figure 5. A: Light blue dots represents simulated daily measurements at 100 loca-

tions over a year, whereas dark blue dots denote monthly averages at each site. B:

Interpolated spatial surface of a snapshot of the data (denoted by the vertical line

in subfigure A) at May 1. C, D: 95% credible interval of posterior predictive samples

drawn from the stacked posterior p̃(Z(ℓ) | X) with ψ(·) chosen as monthly factors

and Fourier series as basis, respectively, to capture seasonal variations.

twelve months of a year. We simulate spatially-temporally correlated data at ns = 100 locations

sampled uniformly in [0, 1]2, and at nt = 360 equally spaced time points in [0, 12], which amounts

to spatial-temporal coordinates {ℓ1, . . . , ℓnsnt} with nsnt = 36, 000. The data is simulated following

the model X(ℓi) = Z(ℓi)+ e′i for i = 1, . . . , nsnt, where e
′
i
ind∼ N(0, 1) denotes the measurement error

for each i and Z(ℓ) ∼ GP(µ(ℓ), C(ℓ, ℓ′;ϕ)). The covariance function C(ℓ, ℓ′;ϕ) is the same as (12)

with ϕs = 4, ν = 0.5 and ϕt = 0.6. We choose the mean function µ(ℓ) to depend only on time

and therefore write it as µ(t). We model µ(t) as a random draw from GP(5, 4 ·R(t, t′; p, λ)), where
R(t, t′; p, λ) = exp(−2λ2 sin2 (π|t− t′|/p)) denotes a periodic covariance kernel with period p = 7

and decay λ = 0.1. This helps introduce seasonal variations in the simulated data. Thus, the

simulated data X(ℓi) for i = 1, . . . , nsnt mimic daily measurements of a variable at 100 monitoring

sites over a year. From these, we compute monthly averages at each site, which we denote by

X(ℓ̃j) for j = 1, . . . , 12ns. To introduce missingness, we randomly remove 10% of the data from

the monthly averages and denote the remaining data simply by X. We proceed to our simulation

experiment with these point-referenced monthly averages as the data. See Figures 5A and 5B for

a visualization of the simulated data. For subsequent analysis, we consider the grids of candidate

values of the spatial decay parameter Gϕs = {2, 3, 5}, Gϕt = {0.3, 0.5, 1}, Gν = {0.5, 1, 1.5}, and
Gδ2 = {0.75, 1.5}. Hence, we stack on 3× 3× 3× 2 = 54 models.

5.2. Point-level spatial-temporal prediction. As a first step, we examine the stacked posterior

predictive distribution p̃(X(ℓ) | X), which corresponds to predicting the underlying process at a
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finer temporal resolution (e.g., daily) from coarser, aggregated observations (see Remark 1). In

this context, ψ(·) in the mean function ψ(·) of the latent spatial-temporal process plays a key role.

Under the assumption that µ(ℓ) = ψ(t)⊤γ depends only on time, we study the two alternative

specifications of the mean function

µ(1)(t) =
r∑

v=1

ψ(1)
v (t)γv = γ1 +

r∑
v=2

γv1(t ∈ monthv) ,

µ(2)(t) =
r∑

v=1

ψ(2)
v (t)γv = γ1 +

⌊r/2⌋∑
v=1

γ2v sin(2πt/pv) + γ2v+1 cos(2πt/pv) ,

(19)

where 1(·) denotes an indicator function, monthv denotes the interval (v − 1, v) for v = 2, . . . , 12.

For example, v = 2 corresponds to the month February. In this case, r = 12 and ψ(1)(t) corresponds

to a simple monthly indicator basis function, which corresponds to monthly factors under monthly

aggregated data. On the other hand, µ(2)(t) consists of smooth periodic basis functions, such as sine

and cosine terms with different periodicity. For our analysis, we choose r = 9 with pv = 3 + v for

v = 1, . . . , 4. Figures 5C and 5D illustrate the behavior of the posterior predictive distribution under

the two choices of ψ(·). We notice that the smooth basis functions lead to superior reconstruction

of the latent process compared to discontinuous monthly indicator functions, due to their ability to

borrow strength across adjacent time points and capture underlying seasonal trends more effectively.

5.3. Block-level spatial-temporal prediction. Next, we study prediction of the latent process

at spatial-temporal blocks. Based on monthly data available at the 100 locations, our aim is to

predict quarterly aggregated data in a collection of spatial blocks, instead of points. Here, a quarter

corresponds to consecutive three-month periods, as shown by alternating shaded regions in Fig. 5A.

We divide the spatial domain, the unit square [0, 1]2, for the four quarters into 40, 50, 30, and 60

irregular spatial blocks, respectively, obtained by a Voronoi tessellation based on the same number

of randomly sampled points, using the R package deldir (Turner, 2024). Given the simulated

data, we seek the posterior predictive distribution of the aggregated latent process quarterly in

these spatial blocks throughout the quarters, based on the stacked posterior p̃(ZL | X). We

assume that the mean function µ(·) is characterized by the monthly indicator basis function ψ(1),

as defined in (19). Figure 6 compares the quarterly aggregated true detrended spatial-temporal

surface Z(ℓ) − µ(ℓ), with which the data were simulated, and its corresponding posterior median

in the spatial blocks. We notice that the block-level posterior distributions closely reflect the true

spatial-temporal pattern, indicating that our proposed model accurately captures the underlying

process. This further demonstrates the flexibility of our proposed hierarchical model (4), as it

accommodates complicated survey designs with time-varying spatial blocks.

5.4. Model comparison. We evaluate and compare the predictive performance of our proposed

model against some alternative approaches. For alternative models, we regress the result Y (Lk) for

each k, as defined in (4), on the predictors w(Lk) and X(Lk). Here, X(Lk) denotes the value of the

covariate aggregated in the spatial-temporal block Lk and is distinct from the latent process Z(Lk).

We use available off-the-shelf spatial interpolation tools to estimate X(Lk). More specifically, we

consider two competing approaches - multilevel B-spline approximation (MBA), implemented using
16
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Figure 6. A: Interpolated spatial surfaces of the quarterly averaged de-trended

true spatial-temporal process which simulated the data; B: Median of the stacked

posterior predictive distribution p̃(ZL−µL | X) at the target spatial-temporal blocks.

the R package MBA (Finley et al., 2024), and, spatial kriging (kriging) from the R package geoR

(Ribeiro Jr et al., 2024). Unlike our proposed method, MBA and kriging proceed by first obtaining

point estimates in a fine grid in the spatial domain and then calculating averages in each spatial

block, completely ignoring the uncertainty surrounding the estimation procedure. In addition, none

of the alternative methods account for temporal correlation in the observed data, and temporal

aggregation at the quarterly level is achieved by simply averaging over monthly observations.

The predictive accuracy for each model is measured using the widely applicable information

criterion, WAIC (Watanabe, 2010; Gelman et al., 2013). We evaluated WAIC for each model on

synthetic data, which are simulated following the steps described in Section 5.1 with the exception

that we now also sample the latent process corresponding to the quarterly averages in spatial blocks,

using (2), where integrated covariance kernels are approximated through Monte Carlo integration

with 500 within-polygon samples. Subsequently, we sample an outcome Y following the model

described in (4) with p = 2, and the covariate w(·) containing an intercept and a predictor sampled

from the standard normal distribution, β1 = (5, 1)⊤, β2 = −1 and τ2 = 5. From Table 1, we

notice that all methods deliver similar predictive performance, with our proposed method slightly

better. Moreover, the execution times for both MBA and kriging depends on the grid resolution.

Also, contrary to common assumption, increasing the grid resolution has little impact on predictive

accuracy, probably because finer resolution spatial interpolation contributes little when they are

aggregated to obtain block-level estimates. Executing the stacking algorithm corresponds to fitting

54 candidate models in parallel across 6 cores. Hence, in addition to offering competitive predictive
17



Method
Model-based

UQ

Temporal

Dependence
WAIC ngrid

Run Time

(in secs)

MBA ✘ ✘

1714.80 200 281

1714.81 100 71

1714.85 50 17

kriging ✘ ✘

1714.75 200 326

1714.73 100 81

1714.75 50 20

Stacking ✔ ✔ 1714.53 – 250

Table 1. Comparison of predictive performance of our proposed method based on

stacking of predictive densities with the alternative approaches. Here, ngrid refers

to the number of points along each axis at which spatial interpolation is performed

to estimate block-level observations; UQ: Uncertainty quantification.

performance with reasonable run-time, a crucial advantage of our framework over other methods

is the ability to deliver fully model-based uncertainty quantification for the latent spatial-temporal

process at any arbitrary location and time.

6. Data analysis

We study the effects of ozone concentration on asthma-related ED visits by first estimating

the spatial-temporal regression module based on available monthly ozone concentration data at

15,725 space-time coordinates. We use the periodic Fourier basis function, as given by ψ(2)(·) in

(19). Guided by visual inspection of the temporal trends in ozone measurements (see Figure A4

in the Appendix), we consider periods of 5, 6, 7, and 12. We consider the separable spatial-

temporal covariance kernel (12). For candidate values of ϕ, we choose Gϕs = {0.3, 0.5, 1}, Gν =

{0.5, 1, 1.5}, and Gδ2 = {1.5, 2}. Hence, we stack on the 54 models obtained by the Cartesian

product of each of these grids. Once we obtain optimal stacking weights based on 1000 posterior

samples of {Zℓ̃, γ, σ
2}, we perform posterior predictive inference for ozone concentrations at 20,000

unique space-time coordinates, comprising 100 randomly sampled locations within the convex hull

of monitoring sites at 200 time points spanning 2015–2022. Figure 7 displays the 95% posterior

predictive credible intervals for the latent spatial-temporal process at these space-time locations,

overlaid on the observed ozone measurements. The uncertainty band is estimated from the stacked

posterior p̃(Z(ℓ) | X). We notice that the temporal trend is captured reasonably well.

Next, we obtain annual county-level ozone concentration predictions based on the stacked poste-

rior p̃(Z(L) | X). Figure 8 shows the posterior median of annual ozone concentration predictions in

each county. The spatial patterns closely resemble those in Figure 3, which shows interpolated sur-

faces from aggregated monthly monitoring data. However, the pronounced ozone hotspots (in the

counties of Riverside, San Bernadino, Inyo, Sierra, Plumas, El Dorado) and the low-concentration

regions (e.g., Humboldt, Mendocino, Sonoma, Marin, San Francisco, San Mateo, Santa Cruz) in
18
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Figure 7. 95% credible intervals (in red) of ozone concentration predictions ob-

tained from the stacked posterior p̃(Z(ℓ) | X), using a periodic Fourier basis mean.
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Figure 8. Posterior median of annual ozone concentration predictions at counties

of California, obtained from monthly point-referenced observations.

Figure 3 are somewhat less pronounced in their corresponding counties in Figure 8. As antici-

pated, spatial averaging dampens local fluctuations, resulting in smoother estimates that may blur

sharp variations in the observed data; nevertheless, the overall pattern of higher inland regions

remains largely preserved. We use these posterior predictive samples of annual county-level ozone

concentrations to estimate its effect on the asthma-related ED visits.
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Parameter Effect
Posterior

median

95% credible

interval
Details

β0 Intercept 3.53 (3.49, 3.58)

Reference group: White

β11 American Indian/ Alaskan native 0.24 (0.16, 0.31)

β12 Asian/ Pacific Islander -0.69 (-0.76, -0.62)

β13 Black 1.30 (1.24, 1.36)

β14 Hispanic 0.004 (-0.05, 0.06)

β2 Ozone (per 0.005 ppm) -0.025 (-0.05, 0.00) baseline: 0.03 ppm

β3 Year -0.10 (-0.11, -0.09) baseline: 2015

σ2 Error variance 0.13 (0.12, 0.14)

Table 2. Asthma and ozone data 2015-22: posterior summary of model parameters.

Subsequently, we estimate a linear regression module with the objective of studying the effect of

ozone, race/ethnicity, and time, on age-adjusted asthma-related emergency department visit rates.

For clarity, we reformulate the linear model in (4) using symbolic notation as follows. Suppose Yijt

denotes the age-adjusted asthma-related ED visit rate (per 10,000) for county i, race/ethnicity j

and year t, for i = 1, . . . 58, j = 1, . . . , 5 and t = 1, . . . , 8. We consider the log-linear model

log(Yijt) = β0 + β1 · Racej + β2 · Ozoneit + β3 · Yeart + ϵijt , ϵijt
ind∼ N(0, |Bi|−1τ2) (20)

where β0 is the intercept, Racej is a 4×1 dummy-encoded vector representing the jth racial group,

β1 = (β11, β12, β13, β14)
⊤ is the corresponding 4× 1 vector of regression coefficients, Ozoneit is the

estimated ozone concentration for county i in year t, Yeart = t for each t, |Bi| is the area of county

i, and ϵijt denote independent measurement errors. We assume a hierarchical model surrounding

(20) as given by (4). We assume the Gaussian prior β | σ2 ∼ N(0, σ2Vβ) with Vβ = 103I7, where

β = (β0, β
⊤
1 , β2, β3)

⊤, and place an inverse gamma prior σ2 ∼ IG(0.01, 0.01).

We present a comprehensive summary of the posterior distributions of the regression coefficients

in Table 2. We find that all regression coefficients except β14 have 95% posterior credible intervals

that exclude zero, suggesting strong evidence of meaningful differences in contributions specific

to each racial group, except that the Hispanic and White groups do not differ significantly in

their effects on asthma-related health emergencies, for a given year and ozone level. For better

understanding, we examine the relative effect sizes corresponding to the racial groups of white (eβ0),

American Indian/ Alaskan native (eβ0+β11), Asian/ Pacific Islander (eβ0+β12), black (eβ0+β13), and

Hispanic (eβ0+β14) racial groups, which reflects the expected rates of asthma-related ED visits for

each racial group in the reference year 2015, when exposed to the baseline level of ozone of 0.03 ppm.

Figure 9A illustrates the posterior distributions of the relative effects sizes of each racial group. Our

analysis reveals that the average asthma-related ED visit rates of the black group are approximately

3.6 times the average rates of the white (CI: 3.4, 3.8) and Hispanic (CI: 3.4, 3.9) groups, 2.9 (CI:

2.7, 3.1) times the average rate of the American Indian/Alaskan native group, and around 7.3 (CI:
20
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Figure 9. A: Posterior distributions of relative effect sizes at constant ozone con-

centration and year; AI/AN: American Indian/ Alaskan native, PI: Pacific Islanders.

B: Posterior distributions of the coefficients corresponding to ozone and year.

6.8, 7.9) times the average rate of the Asian / Pacific Islander group, when all are exposed to

the same levels of ozone concentration, during the year 2015. Here, the reported values represent

posterior medians, and “CI” denotes the corresponding 95% posterior credible intervals. Moreover,

as seen from Figure 9A, the relative effect size of the black group lies above the 87th percentile

of the observed rates. These substantial differences highlight the persistent and disproportionate

burden of asthma-related emergency department visits among the black population in California.

Figure 9B displays the posterior distributions of the regression coefficients corresponding to

ozone concentration and year. We observe a marginally negative association between ozone and

asthma-related ED visit rates. This suggests a weak inverse relationship, with higher ozone levels

associated with slightly lower asthma-related ED visit rates. Although the association is not sta-

tistically strongly supported, it is consistent with patterns reported in previous studies (Zhu et al.,

2003). This also contrasts with the commonly held assumption that a higher concentration of ozone

increases the risk of asthma-related symptoms. More specifically, we find that an increase of 0.005

ppm of ozone concentration leads to a drop in asthma-related ED visit rates by a factor of 0.97 (CI:

0.94, 1). This relationship suggests seasonal interactions of ozone (Quick et al., 2015). Ozone levels

also tend to be higher in rural inland areas (e.g., Central Valley), population density is lower, and

ED utilization is lower due to access barriers, which does not necessarily imply a lower incidence of
21



asthma. Urban coastal areas (e.g., San Francisco Bay area, Los Angeles) may have lower ozone but

higher asthma rates due to other pollutants, higher population density and reporting, and different

healthcare-seeking behaviors. Our analysis shows that each year is associated with a 10% annual

decrease in asthma-related ED visit rates, with the expected rate decreasing by a factor of 0.9 (CI:

0.89–0.91). This is consistent with the downward trend in Figure A2 of the Appendix.

We fit the model on 15,725 space-time coordinates using a stacked posterior that combines 54

candidate models. The entire procedure took roughly 90 minutes, a considerable improvement over

traditional full Bayesian MCMC approaches, where a single iteration could take over 15 minutes.

Furthermore, our regression inference framework accounts for the uncertainty in the estimated

ozone concentrations by integrating the samples from their posterior distribution. This ensures

that both the latent process and its downstream effects are quantified in a fully probabilistic and

computationally efficient manner. Moreover, the use of periodic Fourier basis functions for modeling

temporal trends enables smooth interpolation and prediction at any time point within the study

window. This flexibility would be difficult to achieve using conventional discrete-time models.

In addition, a model relying on monthly basis functions would be unable to provide predictions

for months with no available data, which is a likely scenario given the irregularity frequently

encountered in environmental monitoring records.

7. Discussion

A key strength of our modular Bayesian framework is its capacity to jointly estimate ozone

concentrations at arbitrary spatial and temporal resolutions, along with their association with

an outcome of interest. Stacking of predictive densities enables us to obtain fully model-based

uncertainty quantification for all model parameters by averaging over a collection of candidate

models, each representing different specifications of process parameters. Future methodological

directions may involve developing a multivariate areal time series model in place of the current

linear regression framework, with the goal of capturing additional sources of variability and complex

temporal-spatial dependencies inherent in the data. The data analysis presented in this article not

only underscores existing racial disparities in health outcomes but also points to systemic inequities

in environmental exposure, access to healthcare, and underlying social determinants of health. It

emphasizes the need for targeted public health interventions and policies that address the structural

drivers of asthma morbidity and improve health equity in racial and ethnic communities. Future

data analysis may consider jointly estimating multiple exposure variables, such as NO2, PM2.5,

and others, using multivariate spatial-temporal regression models to better account for potential

correlations among pollutants and their combined effects on health outcomes.
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Appendix to “Bayesian inference for spatial-temporal non-Gaussian data

using predictive stacking”

Appendix A. Descriptive overview of the dataset

In this section, we present an exploratory data analysis of age-adjusted emergency department

(ED) visit rates per 10,000 residents in California, across counties and racial groups. Figure A1

display annual county-level ED visit rates for each racial group throughout the study period 2015-

22, revealing clear spatial and racial patterns. Notably, the black population consistently reports

higher ED visit rates across the study period, with elevated rates concentrated in the coastal areas

of northern California. In terms of data completeness, the white racial group has 2.1% missing

data and the black group has 10.8% missing data, while the Asian/Pacific Islander and American

Indian/Alaska Native groups exhibit high levels of missingness, with 34.1% and 59.3% missing

respectively. On the other hand, at the county level, Los Angeles, Riverside, Sacramento and

San Diego counties have complete ED visit data. The counties with the most missing data are

Lassen, Siskiyou, Calaveras, Del Norte, Plumas, Mariposa, Modoc, Glenn, Nevada, and Trinity,

each exhibiting approximately 50–60% missingness. These counties are predominantly rural and

located in Northern California and the Sierra Nevada region. These areas are characterized by

mountainous terrain and lower population density, which may contribute to challenges in healthcare

access and data reporting completeness. These patterns underscore the importance of considering

both spatial and demographic dimensions in analyzing the data.

Next, we plot the ED visit rates over time to examine temporal trends within each racial group.

As shown in Figure A2, most groups exhibit a gradual decline in rates over the study period,

suggesting potential improvements in underlying health conditions, access to preventive care, or

changes in reporting and healthcare utilization. A strong declining trend is particularly evident

for the white and the Asian/Pacific Islander groups while other groups show more variability.

These patterns provide important context for interpreting cross-sectional differences and support

the inclusion of temporal components in our modeling framework.

Next, we provide justification for the Gaussian modeling assumptions on the log-transformed

ED visit rates. As shown in Figure A3A, the distribution of the raw ED visit rates exhibits strong

positive skewness across all racial groups, with a long right tail driven by a small number of counties

reporting exceptionally high rates. This pronounced skewness is inconsistent with the symmetry

assumed under Gaussian models. Applying a log transformation helps stabilize the variance and

mitigate the effect of extreme values, resulting in a distribution that is more symmetric and approx-

imately Gaussian (see Figure A3B). The log-transformed rates exhibit reduced variability across

the range of values and are more amenable to modeling under Gaussian assumptions.

Further, we plot the recorded measurements of ozone levels across time and observe clear seasonal

fluctuations and periodic patterns, indicative of strong temporal structure (see Figure A4). These

recurring trends suggest the need to account for seasonality when modeling the temporal dynamics

of ozone exposure. In addition to temporal variation, we also find substantial spatial heterogeneity

in ozone concentrations, highlighting the importance of incorporating spatial effects into the mod-

eling framework. Together, these observations motivate the use of flexible spatial-temporal models
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that can effectively capture both the periodic temporal behavior and the variability across different

geographic locations.

Appendix B. Additional simulation results

Calculation of leave-one-out predictive densities is central to evaluating the objective function

used to determine optimal stacking weights. In the main article, we present two approaches for

computing LOO predictive densities. The first is an exact method based on closed-form expressions,

while the second is an approximate method known as Pareto Smoothed Importance Sampling

(PSIS). To assess the accuracy of PSIS relative to the exact method, we conduct a simulation

study using a spatial regression model. Suppose {s1, . . . , sn} denote a collection of n locations in

the unit square, where we simulate spatially point-referenced responses X(si) for i = 1, . . . , n, using

X(si) =Wβ + Z(si) + ϵ(si) , ϵ(si)
ind∼ N(0, δ2σ2) , (A1)

where W is n × 2 matrix comprising of an intercept and a predictor sampled from a standard

normal distribution, β = (2, 5)⊤, ϵ(si) for each i denote independent measurement error, Z(si)

are realizations of central spatial Gaussian process, given by Z(s) ∼ GP(0, Cs(s, s
′;ϕs, ν)), with

covariance function Cs(·, ·) as defined in (12). We take σ2 = 0.4, ϕs = 2, ν = 0.5 and δ2 = 1.5.

We assign priors to β and σ2 as discussed in Section 4.1 of the main article. We fix the values

of ϕs = 3.5, ν = 0.75, and δ2 = 1. Under this model and prior specification, we compute the

exact leave-one-out predictive densities using closed-form expressions. To obtain the leave-one-out

predictive densities via PSIS, we use posterior samples of β and Z = (Z(s1), . . . , Z(sn))
⊤ obtained

using the R package spStack (Pan and Banerjee, 2024), and calculate the log-pointwise predictive

densities (lppd). We then apply the psis() function from the R package loo (Vehtari et al., 2024a)

to compute the leave-one-out predictive densities using stabilized importance weights. Figure A5

presents a comparison of the two methods, showing no visible differences in the resulting predictive

densities. However, the exact method is considerably more computationally intensive than PSIS,

demonstrating the latter’s efficiency for large datasets.

Appendix C. Technical details

Proposition 1. For any a < b and c < d, suppose C̃t(a, b, c, d;ϕ) =
∫ d
c

∫ b
a Ct(t, t

′;ϕt)dtdt
′, then

(a) for non-overlapping (a, b) and (c, d), with a < b ≤ c < d,

C̃t(a, b, c, d;ϕt) =
1

ϕ2t
[F (a, d) + F (b, c)− F (a, c)− F (b, d)] ,

(b) if c = a and d = b, then

C̃t(a, b, a, b;ϕt) =
2

ϕ2t
[ϕt(b− a) + F (a, b)− 1] ,

(c) if intervals (a, b) and (c, d) overlap, with a ≤ c < b < d or a < c < b ≤ d,

C̃t(a, b, c, d;ϕt) =
1

ϕ2t
[2ϕt(b− c) + F (a, d) + F (c, b)− F (a, c)− F (b, d)] ,
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(d) if (a, b) is nested within (c, d), i.e. either c ≤ a < b < d or c < a < b ≤ d,

C̃t(a, b, c, d;ϕt) =
1

ϕ2t
[2ϕt(b− a) + F (a, d) + F (c, b)− F (c, a)− F (b, d)] ,

where F (a1, a2) = F (a1, a2;ϕt) = exp (−ϕt(a2 − a1)) for any a1, a2 ∈ T .

Proof. (a) Without loss of generality, we assume a < b < c < d. The condition a < b < c < d

denotes that the intervals (a, b) and (c, d) are disjoint and (a, b) lies on the left of (c, d).

Since, t ∈ (a, b) and t′ ∈ (c, d). This means t′ ≥ t holds true always, and hence, |t−t′| = t′−t.
So, we evaluate the integral I1 as follows.

I1 =

∫ d

c

∫ b

a
exp(−ϕt|t− t′|)dtdt′ =

∫ d

c

∫ b

a
exp(−ϕt(t′ − t))dtdt′

=
1

ϕt

(
eϕtb − eϕta

)∫ d

c
exp(−ϕtt′)dt′ =

1

ϕ2t

(
eϕtb − eϕta

)(
e−ϕtc − e−ϕtd

)
=

1

ϕ2t

(
eϕt(b−c) − eϕt(b−d) − eϕt(a−c) + eϕt(a−d)

)
=

1

ϕ2t
[F (b, c)− F (a, c)− F (b, d) + F (a, d)]

The equality case b = c simply implies F (c, b) = 0.

(b1) If c = a and d = b, then we are dealing with the integration∫ b

a

∫ b

a
e−ϕt|t−t′|dtdt′ =

∫ b

a

(∫ t′

a
e−ϕt|t−t′|dt+

∫ b

t′
e−ϕt|t−t′|dt

)
dt′

=

∫ b

a

(∫ t′

a
e−ϕt(t′−t)dt+

∫ b

t′
e−ϕt(t−t′)dt

)
dt′

=

∫ b

a

(
e−ϕtt′ · 1

ϕt

(
eϕtt′ − eϕta

)
+ eϕtt′ 1

ϕt

(
e−ϕtt′ − e−ϕtb

))
dt′

=
1

ϕt

∫ b

a
1− eϕt(a−t′) + 1− eϕt(t′−b)dt′

=
2

ϕt
(b− a)− 1

ϕt
eϕta

∫ b

a
e−ϕtt′dt′ − 1

ϕt
e−ϕtb

∫ b

a
eϕtt′dt′

=
2

ϕt
(b− a)− 1

ϕ2t
eϕta

(
e−ϕta − e−ϕtb

)
− 1

ϕ2t
e−ϕtb

(
eϕtb − eϕta

)
=

2

ϕt
(b− a)− 1

ϕ2t

(
1− eϕt(a−b) + 1− eϕt(a−b)

)
=

2

ϕ2t

(
ϕt(b− a) + e−ϕt(b−a) − 1

)
=

2

ϕ2t
[ϕt(b− a) + F (a, b)− 1] .

(b2) In this case, we have a < c < b < d. The integration relies on splitting the integral into

parts depending on the sign of the term |t − t′|, where t ∈ (a, b) and t′ ∈ (c, d). We split
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the integral into three double integrals I1, I2 and I3, where I1 is on (c, d)× (a, c), I2 is on

(c, b)× (c, b), and I3 is on (b, d)× (c, b).∫ d

c

∫ b

a
e−ϕt|t−t′|dtdt′ =

∫ d

c

∫ c

a
e−ϕt(t′−t)dtdt′ +

∫ b

c

∫ b

c
e−ϕt|t−t′|dtdt′ +

∫ d

b

∫ b

c
e−ϕt(t′−t)dtdt′

= I1 + I2 + I3 ,

In I1, t ≤ t′, so we have |t − t′| = t′ − t. In I2, t − t′ may be both positive and negative.

And, for I3, t ≤ t′, so we have |t− t′| = t′ − t. We tackle each of these integrals separately.

I1 =

∫ d

c

∫ c

a
e−ϕt(t′−t)dtdt′ =

∫ d

c
e−ϕtt′

(∫ c

a
eϕttdt

)
dt′

=
1

ϕt

(
eϕtc − eϕta

)∫ d

c
e−ϕtt′dt′ =

1

ϕ2t

(
eϕtc − eϕta

)(
e−ϕtc − e−ϕtd

)
=

1

ϕ2t

(
1− eϕt(c−d) − eϕt(a−c) + eϕt(a−d)

)
.

Similarly, we find the integral I3, which is very similar to I1.

I3 =

∫ d

b

∫ b

c
e−ϕt(t′−t)dtdt′ =

∫ d

b
e−ϕtt′

(∫ b

c
eϕttdt

)
dt′

=
1

ϕ2t

(
eϕtb − eϕtc

)(
e−ϕtb − e−ϕtd

)
=

1

ϕ2t

(
1− eϕt(b−d) − eϕt(c−b) + eϕt(c−d)

)
Following part (b) of Proposition 1, we have

I2 =

∫ b

c

∫ b

c
e−ϕt|t−t′|dtdt′ =

2

ϕ2t

(
ϕt(b− c) + e−ϕt(b−c) − 1

)
Combining I1, I2 and I3, we have

I1 + I2 + I3 =
1

ϕ2t

(
1− eϕt(c−d) − eϕt(a−c) + eϕt(a−d)

)
+

2

ϕ2t

(
ϕt(b− c) + e−ϕt(b−c) − 1

)
+

1

ϕ2t

(
1− eϕt(b−d) − eϕt(c−b) + eϕt(c−d)

)
=

1

ϕ2t

(
2− eϕt(a−c) + eϕt(a−d) − eϕt(b−d) − eϕt(c−b)

)
+

2

ϕ2t

(
ϕt(b− c) + e−ϕt(b−c)

)
− 2

ϕ2t

=
2

ϕt
(b− c) + 1

ϕ2t

(
eϕt(c−b) − eϕt(a−c) + eϕt(a−d) − eϕt(b−d)

)
=

1

ϕ2t

[
2ϕt(b− c) + e−ϕt(b−c) − e−ϕt(c−a) − e−ϕt(d−b) + e−ϕt(d−a)

]
=

1

ϕ2t
[2ϕt(b− c) + F (c, b)− F (a, c)− F (b, d) + F (a, d)]
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(c) In this case the interval (a, b) is nested within the interval (c, d). Hence, we have c < a <

b < d. We split the integral with respect to t′ on (c, d) into three - one over (c, a), one over

(a, b) and the last over (b, d). Hence, we have∫ d

c

∫ b

a
e−ϕt|t−t′|dtdt′ =

∫ a

c

∫ b

a
e−ϕt|t−t′|dtdt′ +

∫ b

a

∫ b

a
e−ϕt|t−t′|dtdt′ +

∫ d

b

∫ b

a
e−ϕt|t−t′|dtdt′

= I1 + I2 + I3 .

We evaluate each of the integrals I1, I2 and I3 separately. First, we find

I1 =

∫ a

c

∫ b

a
e−ϕt(t−t′)dtdt′ =

∫ a

c
eϕtt′

(∫ b

a
e−ϕttdt

)
dt′

=
1

ϕ2t

(
e−ϕta − e−ϕtb

)(
eϕta − eϕtc

)
=

1

ϕ2t

(
1− eϕt(c−a) − eϕt(a−b) + eϕt(c−b)

)
.

Similarly, we find the integral I3 similar to I1.

I3 =

∫ d

b

∫ b

a
e−ϕt(t′−t)dtdt′ =

∫ d

b
e−ϕtt′

(∫ b

a
eϕttdt

)
dt′

=
1

ϕ2t

(
eϕtb − eϕta

)(
e−ϕtb − e−ϕtd

)
=

1

ϕ2t

(
1− eϕt(b−d) − eϕt(a−b) + eϕt(a−d)

)
Following part (b) of Proposition 1, we find the integral I2. Next, we combine I1, I2 and

I3.

I1 + I2 + I3 =
1

ϕ2t

(
1− eϕt(c−a) − eϕt(a−b) + eϕt(c−b)

)
+

2

ϕ2t

(
ϕt(b− a) + e−ϕt(b−a) − 1

)
+

1

ϕ2t

(
1− eϕt(b−d) − eϕt(a−b) + eϕt(a−d)

)
=

1

ϕ2t

(
2− 2eϕt(a−b) − eϕt(c−a) + eϕt(c−b) − eϕt(b−d) + eϕt(a−d)

)
+

2

ϕt
(b− a) + 1

ϕ2t

(
2eϕt(a−b) − 2

)
=

1

ϕ2t

[
2ϕt(b− a) + e−ϕt(b−c) − e−ϕt(a−c) − e−ϕt(d−b) + e−ϕt(d−a)

]
=

1

ϕ2t
[2ϕt(b− a) + F (c, b)− F (c, a)− F (b, d) + F (a, d)]

□
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Figure A1. Asthma ED visit rates by race 2015-22
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Figure A2. Annual trend in asthma-related ED visit rates per 10,000 residents for

different racial groups.
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Figure A3. Race-specific estimated density of county-level age-adjusted rates (per

10,000) of asthma ED visits during 2015-2022.
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Figure A4. Monthly average ozone concentrations (in parts per million, ppm)

recorded at various ozone monitoring sites across California from 2015 to 2022. A

clear seasonal pattern is evident, with ozone levels peaking as well as exhibiting

higher variability during the warmer months (May to October) and reaches troughs

during the colder months (November to April).
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Figure A5. Comparison of leave-one-out predictive densities computed using exact

closed form expression given by (17) and Pareto smoothed importance sampling

(PSIS) for a spatial regression model on a simulated dataset of sample size 5000.
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