
Recover posterior samples of scale parameters of spatial/spatial-temporal generalized linear models
Source:R/recoverGLMscale.R
recoverGLMscale.RdA function to recover posterior samples of scale parameters that
were marginalized out during model fit. This is only applicable for spatial
or, spatial-temporal generalized linear models. This function applies on
outputs of functions that fits a spatial/spatial-temporal generalized linear
model, such as spGLMexact(), spGLMstack(), stvcGLMexact(), and
stvcGLMstack().
Value
An object of the same class as input, and updates the list tagged
samples with the posterior samples of the scale parameters. The new tags
are sigmasq.beta and z.scale.
Author
Soumyakanti Pan span18@ucla.edu,
Sudipto Banerjee sudipto@ucla.edu
Examples
set.seed(1234)
data("simPoisson")
dat <- simPoisson[1:100, ]
mod1 <- spGLMstack(y ~ x1, data = dat, family = "poisson",
coords = as.matrix(dat[, c("s1", "s2")]), cor.fn = "matern",
params.list = list(phi = c(3, 5, 7), nu = c(0.5, 1.5),
boundary = c(0.5)),
n.samples = 100,
loopd.controls = list(method = "CV", CV.K = 10, nMC = 500),
verbose = TRUE)
#>
#> STACKING WEIGHTS:
#>
#> | phi | nu | boundary | weight |
#> +---------+-----+-----+----------+--------+
#> | Model 1 | 3| 0.5| 0.5| 0.000 |
#> | Model 2 | 5| 0.5| 0.5| 0.000 |
#> | Model 3 | 7| 0.5| 0.5| 0.000 |
#> | Model 4 | 3| 1.5| 0.5| 0.398 |
#> | Model 5 | 5| 1.5| 0.5| 0.082 |
#> | Model 6 | 7| 1.5| 0.5| 0.520 |
#> +---------+-----+-----+----------+--------+
#>
# Recover posterior samples of scale parameters
mod1.1 <- recoverGLMscale(mod1)
# sample from the stacked posterior distribution
post_samps <- stackedSampler(mod1.1)